我们提出了一条新型的神经管道Msgazenet,该管道通过通过多发射框架利用眼睛解剖学信息来学习凝视的表示。我们提出的解决方案包括两个组件,首先是一个用于隔离解剖眼区域的网络,以及第二个用于多发达凝视估计的网络。眼睛区域的隔离是通过U-NET样式网络进行的,我们使用合成数据集训练该网络,该数据集包含可见眼球和虹膜区域的眼睛区域掩模。此阶段使用的合成数据集是一个由60,000张眼睛图像组成的新数据集,我们使用眼视线模拟器Unityeyes创建。然后将眼睛区域隔离网络转移到真实域,以生成真实世界图像的面具。为了成功进行转移,我们在训练过程中利用域随机化,这允许合成图像从较大的差异中受益,并在类似于伪影的增强的帮助下从更大的差异中受益。然后,生成的眼睛区域掩模与原始眼睛图像一起用作我们凝视估计网络的多式输入。我们在三个基准凝视估计数据集(Mpiigaze,Eyediap和Utmultiview)上评估框架,在那里我们通过分别获得7.57%和1.85%的性能,在Eyediap和Utmultiview数据集上设置了新的最新技术Mpiigaze的竞争性能。我们还研究了方法在数据中的噪声方面的鲁棒性,并证明我们的模型对噪声数据不太敏感。最后,我们执行各种实验,包括消融研究,以评估解决方案中不同组件和设计选择的贡献。
translated by 谷歌翻译