配备摄像机的无人机可以显着增强人类在3D空间中具有显着的可操作性,从而使人类感知世界的能力。具有讽刺意味的是,无人机的对象检测始终是在2D图像空间中进行的,这从根本上限制了其理解3D场景的能力。此外,由于缺乏变形模型,无法直接应用于为自动驾驶开发的现有3D对象检测方法,这对于具有敏感变形和小物体的遥远空中透视至关重要。为了填补空白,这项工作提出了一个名为DVDET的双视检测系统,以在2D图像空间和3D物理空间中实现空中单眼对象检测。为了解决严重的视图变形问题,我们提出了一个可训练的可训练的可训练的转换模块,该模块可以从无人机的角度正确地扭曲信息到BEV。与汽车的单眼方法相比,我们的转换包括一个可学习的可变形网络,可显式修改严重的偏差。为了应对数据集挑战,我们提出了一个名为AM3D-SIM的新的大规模模拟数据集,该数据集由AirSim和Carla的共模制成,以及一个名为AM3D-REAL的新的现实世界空中数据集,由DJI Matrice 300 RTK收集,在两个数据集中,都提供了3D对象检测的高质量注释。广泛的实验表明,i)空中单眼3D对象检测是可行的; ii)在仿真数据集中预先训练的模型受益于现实世界的性能,iii)DVDET也有益于汽车的单眼3D对象检测。为了鼓励更多的研究人员调查该领域,我们将在https://sjtu-magic.github.io/dataset/am3d/中发布数据集和相关代码。
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
由于LIDAR传感器捕获的精确深度信息缺乏准确的深度信息,单眼3D对象检测是一个关键而挑战的自主驾驶任务。在本文中,我们提出了一种立体引导的单目3D对象检测网络,称为SGM3D,其利用立体图像提取的鲁棒3D特征来增强从单眼图像中学到的特征。我们创新地研究了多粒度域适配模块(MG-DA)以利用网络的能力,以便仅基于单手套提示产生立体模拟功能。利用粗均衡特征级以及精细锚级域适配,以引导单眼分支。我们介绍了一个基于IOO匹配的对齐模块(iou-ma),用于立体声和单眼域之间的对象级域适应,以减轻先前阶段中的不匹配。我们对最具挑战性的基蒂和Lyft数据集进行了广泛的实验,并实现了新的最先进的性能。此外,我们的方法可以集成到许多其他单眼的方法中以提高性能而不引入任何额外的计算成本。
translated by 谷歌翻译
多代理协作感知可以通过使代理商能够通过交流相互共享互补信息来显着升级感知表现。它不可避免地会导致感知表现与沟通带宽之间的基本权衡。为了解决这个瓶颈问题,我们提出了一个空间置信度图,该图反映了感知信息的空间异质性。它使代理只能在空间上共享稀疏而感知的关键信息,从而有助于沟通。基于这张新型的空间置信度图,我们提出了2Comm,即沟通有效的协作感知框架。其中2Comm具有两个不同的优势:i)它考虑了实用的压缩,并使用较少的沟通来通过专注于感知至关重要的领域来实现更高的感知表现; ii)它可以通过动态调整涉及通信的空间区域来处理不同的通信带宽。要评估2comm的位置,我们考虑了在现实世界和模拟方案中使用两种模式(相机/激光镜头)和两种代理类型(CAR/无人机)的3D对象检测:OPV2V,v2x-sim,dair-v2x和我们的原始的Coperception-uavs。其中2comm始终优于先前的方法;例如,它实现了超过$ 100,000 \ times $较低的通信量,并且在OPV2V上仍然优于脱颖而出和v2x-vit。我们的代码可在https://github.com/mediabrain-sjtu/where2comm上找到。
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
Compared to typical multi-sensor systems, monocular 3D object detection has attracted much attention due to its simple configuration. However, there is still a significant gap between LiDAR-based and monocular-based methods. In this paper, we find that the ill-posed nature of monocular imagery can lead to depth ambiguity. Specifically, objects with different depths can appear with the same bounding boxes and similar visual features in the 2D image. Unfortunately, the network cannot accurately distinguish different depths from such non-discriminative visual features, resulting in unstable depth training. To facilitate depth learning, we propose a simple yet effective plug-and-play module, One Bounding Box Multiple Objects (OBMO). Concretely, we add a set of suitable pseudo labels by shifting the 3D bounding box along the viewing frustum. To constrain the pseudo-3D labels to be reasonable, we carefully design two label scoring strategies to represent their quality. In contrast to the original hard depth labels, such soft pseudo labels with quality scores allow the network to learn a reasonable depth range, boosting training stability and thus improving final performance. Extensive experiments on KITTI and Waymo benchmarks show that our method significantly improves state-of-the-art monocular 3D detectors by a significant margin (The improvements under the moderate setting on KITTI validation set are $\mathbf{1.82\sim 10.91\%}$ mAP in BEV and $\mathbf{1.18\sim 9.36\%}$ mAP in 3D}. Codes have been released at https://github.com/mrsempress/OBMO.
translated by 谷歌翻译
In this paper, we propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization. Towards this goal, we design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution. Our proposed continuous fusion layer encode both discrete-state image features as well as continuous geometric information. This enables us to design a novel, reliable and efficient end-to-end learnable 3D object detector based on multiple sensors. Our experimental evaluation on both KITTI as well as a large scale 3D object detection benchmark shows significant improvements over the state of the art.
translated by 谷歌翻译
Monocular 3D object detection is a key problem for autonomous vehicles, as it provides a solution with simple configuration compared to typical multi-sensor systems. The main challenge in monocular 3D detection lies in accurately predicting object depth, which must be inferred from object and scene cues due to the lack of direct range measurement. Many methods attempt to directly estimate depth to assist in 3D detection, but show limited performance as a result of depth inaccuracy. Our proposed solution, Categorical Depth Distribution Network (CaDDN), uses a predicted categorical depth distribution for each pixel to project rich contextual feature information to the appropriate depth interval in 3D space. We then use the computationally efficient bird's-eye-view projection and single-stage detector to produce the final output detections. We design CaDDN as a fully differentiable end-to-end approach for joint depth estimation and object detection. We validate our approach on the KITTI 3D object detection benchmark, where we rank 1 st among published monocular methods. We also provide the first monocular 3D detection results on the newly released Waymo Open Dataset. We provide a code release for CaDDN which is made available here.
translated by 谷歌翻译
单眼3D对象检测是低成本自主剂感知其周围环境的常见解决方案。单眼检测已分为两类:(1)直接从正面视图图像推断3D边界框的直接方法; (2)3D中间表示方法将图像映射到3D空间以进行后续3D检测。第二类不仅脱颖而出,不仅是因为3D检测锻造的伪装在更有意义和代表性的特征的怜悯下,而且还因为新兴的SOTA端到端的预测和计划范式需要从感知中获得鸟类视图的特征图管道。但是,在转换为3D表示形式时,这些方法不能保证对象在潜在空间中的隐式方向和位置与在欧几里得空间中明确观察到的物体一致,这会损害模型性能。因此,我们认为,隐式和显式特征的一致性很重要,并提出了一种新颖的单眼检测方法,名为CIEF,并具有第一个方向感知的图像主链,以消除随后的3D表示中隐式和显式特征的差异。作为第二个贡献,我们引入了射线注意机制。与以前的方法相反,该方法沿着投影射线重复特征或依靠另一个Intermedia froustum Point云,我们将图像特征直接转换为具有稳定特征的Voxel表示。我们还提出了一个手工制作的高斯位置编码函数,该函数的表现优于正弦的编码函数,但保持连续的好处。 CIEF在提交时间的3D和BEV检测基准的所有报告的方法中排名第一。
translated by 谷歌翻译
鉴于其经济性与多传感器设置相比,从单眼输入中感知的3D对象对于机器人系统至关重要。它非常困难,因为单个图像无法提供预测绝对深度值的任何线索。通过双眼方法进行3D对象检测,我们利用了相机自我运动提供的强几何结构来进行准确的对象深度估计和检测。我们首先对此一般的两视案例进行了理论分析,并注意两个挑战:1)来自多个估计的累积错误,这些估计使直接预测棘手; 2)由静态摄像机和歧义匹配引起的固有难题。因此,我们建立了具有几何感知成本量的立体声对应关系,作为深度估计的替代方案,并以单眼理解进一步补偿了它,以解决第二个问题。我们的框架(DFM)命名为深度(DFM),然后使用已建立的几何形状将2D图像特征提升到3D空间并检测到其3D对象。我们还提出了一个无姿势的DFM,以使其在摄像头不可用时可用。我们的框架在Kitti基准测试上的优于最先进的方法。详细的定量和定性分析也验证了我们的理论结论。该代码将在https://github.com/tai-wang/depth-from-motion上发布。
translated by 谷歌翻译
Surround-view fisheye perception under valet parking scenes is fundamental and crucial in autonomous driving. Environmental conditions in parking lots perform differently from the common public datasets, such as imperfect light and opacity, which substantially impacts on perception performance. Most existing networks based on public datasets may generalize suboptimal results on these valet parking scenes, also affected by the fisheye distortion. In this article, we introduce a new large-scale fisheye dataset called Fisheye Parking Dataset(FPD) to promote the research in dealing with diverse real-world surround-view parking cases. Notably, our compiled FPD exhibits excellent characteristics for different surround-view perception tasks. In addition, we also propose our real-time distortion-insensitive multi-task framework Fisheye Perception Network (FPNet), which improves the surround-view fisheye BEV perception by enhancing the fisheye distortion operation and multi-task lightweight designs. Extensive experiments validate the effectiveness of our approach and the dataset's exceptional generalizability.
translated by 谷歌翻译
我们在野外的一对立体声RGB图像上介绍了基于类别级3D对象检测和隐式形状估计的基于学习的框架。传统的立体声3D对象检测方法仅使用3D边界框来描述检测到的对象,无法推断出完全的表面几何形状,这使得创造难以创造逼真的户外沉浸体验。相比之下,我们提出了一种新的模型S-3D-RCNN,可以执行精确的本地化,并为检测到的对象提供完整和分辨不可行的形状描述。我们首先使用全局本地框架从形状重建估计对象坐标系估计。然后,我们提出了一种新的实例级网络,通过从立体声区域的基于点的表示来解决未经遵守的表面幻觉问题,并且Infers具有预测的完整表面几何形状的隐式形状码。广泛的实验使用Kitti基准测试的现有和新指标验证我们的方法的卓越性能。此HTTPS URL可提供代码和预先接受的型号。
translated by 谷歌翻译
We present AVOD, an Aggregate View Object Detection network for autonomous driving scenarios. The proposed neural network architecture uses LIDAR point clouds and RGB images to generate features that are shared by two subnetworks: a region proposal network (RPN) and a second stage detector network. The proposed RPN uses a novel architecture capable of performing multimodal feature fusion on high resolution feature maps to generate reliable 3D object proposals for multiple object classes in road scenes. Using these proposals, the second stage detection network performs accurate oriented 3D bounding box regression and category classification to predict the extents, orientation, and classification of objects in 3D space. Our proposed architecture is shown to produce state of the art results on the KITTI 3D object detection benchmark [1] while running in real time with a low memory footprint, making it a suitable candidate for deployment on autonomous vehicles. Code is at: https://github.com/kujason/avod
translated by 谷歌翻译
基于摄像头的3D对象探测器由于其更广泛的部署而欢迎其比LIDAR传感器较低。我们首先重新访问先前的立体声检测器DSGN,以表示代表3D几何和语义的立体音量构建方式。我们抛光立体声建模,并提出高级版本DSGN ++,旨在在三个主要方面增强整个2d到3D管道的有效信息流。首先,为了有效地将2D信息提高到立体声音量,我们提出了深度扫地(DPS),以允许较密集的连接并提取深度引导的特征。其次,为了掌握不同间距的功能,我们提出了一个新颖的立体声音量 - 双视立体声卷(DSV),该卷(DSV)集成了前视图和顶部视图功能,并重建了相机frustum中的子素深度。第三,随着前景区域在3D空间中的占主导地位,我们提出了一种多模式数据编辑策略-Stereo-lidar拷贝性 - 可确保跨模式对齐并提高数据效率。没有铃铛和哨子,在流行的Kitti基准测试中的各种模式设置中进行了广泛的实验表明,我们的方法始终优于所有类别的基于相机的3D检测器。代码可从https://github.com/chenyilun95/dsgn2获得。
translated by 谷歌翻译
3D object detection is an essential task in autonomous driving. Recent techniques excel with highly accurate detection rates, provided the 3D input data is obtained from precise but expensive LiDAR technology. Approaches based on cheaper monocular or stereo imagery data have, until now, resulted in drastically lower accuracies -a gap that is commonly attributed to poor image-based depth estimation. However, in this paper we argue that it is not the quality of the data but its representation that accounts for the majority of the difference. Taking the inner workings of convolutional neural networks into consideration, we propose to convert image-based depth maps to pseudo-LiDAR representations -essentially mimicking the LiDAR signal. With this representation we can apply different existing LiDAR-based detection algorithms. On the popular KITTI benchmark, our approach achieves impressive improvements over the existing state-of-the-art in image-based performance -raising the detection accuracy of objects within the 30m range from the previous state-of-the-art of 22% to an unprecedented 74%. At the time of submission our algorithm holds the highest entry on the KITTI 3D object detection leaderboard for stereo-image-based approaches. Our code is publicly available at https: //github.com/mileyan/pseudo_lidar.
translated by 谷歌翻译
对于许多应用程序,包括自动驾驶,机器人抓握和增强现实,单眼3D对象检测是一项基本但非常重要的任务。现有的领先方法倾向于首先估算输入图像的深度,并基于点云检测3D对象。该例程遭受了深度估计和对象检测之间固有的差距。此外,预测误差积累也会影响性能。在本文中,提出了一种名为MonopCN的新方法。引入单频道的洞察力是,我们建议在训练期间模拟基于点云的探测器的特征学习行为。因此,在推理期间,学习的特征和预测将与基于点云的检测器相似。为了实现这一目标,我们建议一个场景级仿真模块,一个ROI级别的仿真模块和一个响应级仿真模块,这些模块逐渐用于检测器的完整特征学习和预测管道。我们将我们的方法应用于著名的M3D-RPN检测器和CADDN检测器,并在Kitti和Waymo Open数据集上进行了广泛的实验。结果表明,我们的方法始终提高不同边缘的不同单眼探测器的性能,而无需更改网络体系结构。我们的方法最终达到了最先进的性能。
translated by 谷歌翻译
近年来,自主驾驶LIDAR数据的3D对象检测一直在迈出卓越的进展。在最先进的方法中,已经证明了将点云进行编码为鸟瞰图(BEV)是有效且有效的。与透视图不同,BEV在物体之间保留丰富的空间和距离信息;虽然在BEV中相同类型的更远物体不会较小,但它们包含稀疏点云特征。这一事实使用共享卷积神经网络削弱了BEV特征提取。为了解决这一挑战,我们提出了范围感知注意网络(RAANET),提取更强大的BEV功能并产生卓越的3D对象检测。范围感知的注意力(RAA)卷曲显着改善了近距离的特征提取。此外,我们提出了一种新的辅助损耗,用于密度估计,以进一步增强覆盖物体的Raanet的检测精度。值得注意的是,我们提出的RAA卷积轻量级,并兼容,以集成到用于BEV检测的任何CNN架构中。 Nuscenes DataSet上的广泛实验表明,我们的提出方法优于基于LIDAR的3D对象检测的最先进的方法,具有16 Hz的实时推断速度,为LITE版本为22 Hz。该代码在匿名GitHub存储库HTTPS://github.com/Anonymous0522 / ange上公开提供。
translated by 谷歌翻译
低成本单眼的3D对象检测在自主驾驶中起着基本作用,而其精度仍然远非令人满意。在本文中,我们挖掘了3D对象检测任务,并将其重构为对象本地化和外观感知的子任务,这有​​利于整个任务的互惠信息的深度挖掘。我们介绍了一个名为DFR-Net的动态特征反射网络,其中包含两种新的独立模块:(i)首先将任务特征分开的外观定位特征反射模块(ALFR),然后自相互反映互核特征; (ii)通过自学习方式自适应地重建各个子任务的培训过程的动态内部交易模块(DIT)。关于挑战基蒂数据集的广泛实验证明了DFR网的有效性和泛化。我们在基蒂测试集中的所有单眼3D对象探测器中排名第一(直到2021年3月16日)。所提出的方法在许多尖端的3D检测框架中也容易在较忽略的成本下以忽略的成本来播放。该代码将公开可用。
translated by 谷歌翻译
我们提出了DeepFusion,这是一种模块化的多模式结构,可在不同组合中以3D对象检测为融合激光雷达,相机和雷达。专门的功能提取器可以利用每种模式,并且可以轻松交换,从而使该方法变得简单而灵活。提取的特征被转化为鸟眼视图,作为融合的共同表示。在特征空间中融合方式之前,先进行空间和语义对齐。最后,检测头利用丰富的多模式特征,以改善3D检测性能。 LIDAR相机,激光摄像头雷达和摄像头融合的实验结果显示了我们融合方法的灵活性和有效性。在此过程中,我们研究了高达225米的遥远汽车检测的很大程度上未开发的任务,显示了激光摄像机融合的好处。此外,我们研究了3D对象检测的LIDAR点所需的密度,并在对不利天气条件的鲁棒性示例中说明了含义。此外,对我们的摄像头融合的消融研究突出了准确深度估计的重要性。
translated by 谷歌翻译
车辆到所有(V2X)通信技术使车辆与附近环境中许多其他实体之间的协作可以从根本上改善自动驾驶的感知系统。但是,缺乏公共数据集极大地限制了协作感知的研究进度。为了填补这一空白,我们提出了V2X-SIM,这是一个针对V2X辅助自动驾驶的全面模拟多代理感知数据集。 V2X-SIM提供:(1)\ hl {Multi-Agent}传感器记录来自路边单元(RSU)和多种能够协作感知的车辆,(2)多模式传感器流,可促进多模式感知和多模式感知和(3)支持各种感知任务的各种基础真理。同时,我们在三个任务(包括检测,跟踪和细分)上为最先进的协作感知算法提供了一个开源测试台,并为最先进的协作感知算法提供了基准。 V2X-SIM试图在现实数据集广泛使用之前刺激自动驾驶的协作感知研究。我们的数据集和代码可在\ url {https://ai4ce.github.io/v2x-sim/}上获得。
translated by 谷歌翻译