本文介绍了一个新的在线多代理轨迹规划算法,可确保在杂乱的环境中产生安全,动态可行的轨迹。所提出的算法利用线性安全走廊(LSC)来制定分布式轨迹优化问题,只有可行的约束,因此它不采用松弛变量或软限制以避免优化失败。我们采用基于优先的目标规划方法来防止僵局而无需额外的程序来确定要屈服的机器人。所提出的算法可以平均将60个代理的轨迹平均每代理使用英特尔I7笔记本电脑计算60个代理,并与基于软限制的基线相比,显示了类似的飞行距离和距离。我们核实所提出的方法可以在随机森林和室内空间中没有僵局达到目标,并且我们通过在迷宫状环境中使用10个时段的真正飞行试验验证了所提出的算法的安全性和可操作性。
translated by 谷歌翻译
本文提出了一种模型预测控制(MPC)静态跟踪静态和动态障碍物的算法。我们的主要贡献在于提高了潜在的非凸轨道优化的计算途径和可靠性。结果是MPC算法,在笔记本电脑和嵌入式硬件设备(如Jetson TX2)上运行实时运行。我们的方法依赖于在由此产生的轨迹优化中引起多凸结构的跟踪,碰撞和遮挡约束的新颖重新装配。我们利用拆分Bregman迭代技术利用这些数学结构,最终将我们的MPC减少到几毫秒内可解决的一系列凸二次程序。即使考虑到目标轨迹和动态障碍物的简单恒定速度预测,我们的快速重新计划允许在复杂环境中遮挡和无碰撞跟踪。我们在现实物理发动机中进行广泛的台面标记,并表明我们的MPC在可视性,平滑度和计算时度量中表现出最先进的算法。
translated by 谷歌翻译
神经辐射场(NERF)最近被成为自然,复杂3D场景的代表的强大范例。 NERFS表示神经网络中的连续体积密度和RGB值,并通过射线跟踪从看不见的相机观点生成照片逼真图像。我们提出了一种算法,用于通过仅使用用于本地化的板载RGB相机表示为NERF的3D环境导航机器人。我们假设现场的NERF已经预先训练了离线,机器人的目标是通过NERF中的未占用空间导航到目标姿势。我们介绍了一种轨迹优化算法,其避免了基于NERF中的高密度区域的碰撞,其基于差分平整度的离散时间版本,其可用于约束机器人的完整姿势和控制输入。我们还介绍了基于优化的过滤方法,以估计单位的RGB相机中的NERF中机器人的6dof姿势和速度。我们将轨迹策划器与在线重新循环中的姿势过滤器相结合,以提供基于视觉的机器人导航管道。我们使用丛林健身房环境,教堂内部和巨石阵线导航的四轮车机器人,使用RGB相机展示仿真结果。我们还展示了通过教会导航的全向地面机器人,要求它重新定位以缩小差距。这项工作的视频可以在https://mikh3x4.github.io/nerf-navigation/找到。
translated by 谷歌翻译
为了解决复杂环境中的自主导航问题,本文新呈现了一种有效的运动规划方法。考虑到大规模,部分未知的复杂环境的挑战,精心设计了三层运动规划框架,包括全局路径规划,本地路径优化和时间最佳速度规划。与现有方法相比,这项工作的新颖性是双重的:1)提出了一种新的动作原语的启发式引导剪枝策略,并完全集成到基于国家格子的全球路径规划器中,以进一步提高图表搜索的计算效率,以及2)提出了一种新的软限制局部路径优化方法,其中充分利用底层优化问题的稀疏带系统结构以有效解决问题。我们在各种复杂的模拟场景中验证了我们方法的安全,平滑,灵活性和效率,并挑战真实世界的任务。结果表明,与最近的近期B型zier曲线的状态空间采样方法相比,全球规划阶段,计算效率提高了66.21%,而机器人的运动效率提高了22.87%。我们命名拟议的运动计划框架E $ \ mathrm {^ 3} $拖把,其中3号不仅意味着我们的方法是三层框架,而且还意味着所提出的方法是三个阶段有效。
translated by 谷歌翻译
在本文中,我们在局部不同的牵引条件下解决了处理限制的运动规划和控制问题。我们提出了一种新的解决方案方法,其中通过源自预测摩擦估计来表示预测地平线上的牵引变化。在后退地平线时装解决了约束的有限时间最佳控制问题,施加了这些时变的约束。此外,我们的方法具有集成的采样增强程序,该过程解决了对突然约束改变而产生的局部最小值的不可行性和敏感性的问题,例如,由于突然的摩擦变化。我们在一系列临界情景中验证了沃尔沃FH16重型车辆的提议算法。实验结果表明,通过确保计划运动的动态可行性,通过确保高牵引利用时,牵引自适应运动规划和控制改善了避免事故的车辆的能力,既通过适应低局部牵引。
translated by 谷歌翻译
本研究提出了一种具有动态障碍物和不均匀地形的部分可观察环境中的BipeDal运动的安全任务和运动计划(夯实)的分层综合框架。高级任务规划师采用线性时间逻辑(LTL),用于机器人及其环境之间的反应游戏合成,并为导航安全和任务完成提供正式保证。为了解决环境部分可观察性,在高级导航计划者采用信仰抽象,以估计动态障碍的位置。因此,合成的动作规划器向中级运动规划器发送一组运动动作,同时基于运动过程的阶数模型(ROM)结合从安全定理提取的安全机置规范。运动计划程序采用ROM设计安全标准和采样算法,以生成准确跟踪高级动作的非周期性运动计划。为了解决外部扰动,本研究还调查了关键帧运动状态的安全顺序组成,通过可达性分析实现了对外部扰动的强大转变。最终插值一组基于ROM的超参数,以设计由轨迹优化生成的全身运动机器,并验证基于ROM的可行部署,以敏捷机器人设计的20多个自由的Cassie机器人。
translated by 谷歌翻译
我们向连续状态马尔可夫决策过程(MDP)提出了一种扩散近似方法,该方法可用于解决非结构化的越野环境中的自主导航和控制。与呈现完全已知的状态转换模型的大多数决策定理计划框架相比,我们设计了一种方法,该方法消除了这种强烈假设,这些假设通常非常难以在现实中工程师。我们首先采用价值函数的二阶泰勒扩展。然后通过部分微分方程近似贝尔曼的最优性方程,其仅依赖于转换模型的第一和第二矩。通过组合价值函数的内核表示,然后设计一种有效的策略迭代算法,其策略评估步骤可以表示为特征的方程式的线性系统,其特征是由有限组支持状态。我们首先通过大量的仿真以2D美元的$ 2D $避让和2.5d $地形导航问题进行验证。结果表明,拟议的方法在几个基线上导致了卓越的性能。然后,我们开发一个系统,该系统将我们的决策框架整合,与船上感知,并在杂乱的室内和非结构化的户外环境中进行现实世界的实验。物理系统的结果进一步展示了我们在挑战现实世界环境中的方法的适用性。
translated by 谷歌翻译
如今,Multototors正在享受丰富类型的任务中的重要角色。在这些任务期间,进入狭窄的和狭窄的隧道,即人类几乎无法访问,对于多陆来说是非常具有挑战性的。受限制的空间和重要的自我气流扰动在快速和缓慢的飞行速度下诱导控制问题,同时引起国家估计和感知的问题。因此,安全隧道飞行需要适当速度的平滑轨迹。为了解决这些挑战,在这封信中,提供了一个完整的自主空中系统,可以通过尺寸窄到0.6米的隧道平稳地飞行。该系统包含一个运动规划器,它沿着隧道中心线产生平滑的Mini-Jerk轨迹,该隧道中心线根据地图和欧几里德距离场(EDF)提取,并且通过计算流体动力学(CFD)和飞行获得其实际速度范围数据分析。在四窄隧道内部进行了大量飞行实验,以验证规划框架以及整个系统的鲁棒性。
translated by 谷歌翻译
机器人等系统的安全操作要求它们计划和执行受安全约束的轨迹。当这些系统受到动态的不确定性的影响时,确保不违反限制是具有挑战性的。本文提出了基于受约束差分动态规划(DDP)的附加不确定性和非线性安全约束的安全轨迹,安全轨迹优化和控制方法。在其运动中的机器人的安全性被制定为机会限制了用户所选择的约束满足的概率。通过约束收紧将机会约束转换为DDP制剂中的确定性。为了避免在约束期间的过保守,从受约束的DDP导出的反馈策略的线性控制增益用于预测中的闭环不确定性传播的近似。所提出的算法在三种不同的机器人动态上进行了经验评估,模拟中具有高达12度的自由度。使用物理硬件实现对方法的计算可行性和适用性进行了说明。
translated by 谷歌翻译
本文介绍了适用于各种实用多机器人应用的分布式算法。在这种多机器人应用中,使命的用户定义目标可以作为一般优化问题投射,而无需每个不同机器人的子任务的明确指南。由于环境未知,未知的机器人动态,传感器非线性等,优化成本函数的分析形式不可用。因此,标准梯度 - 下降样算法不适用于这些问题。为了解决这个问题,我们介绍了一种新的算法,仔细设计每个机器人的子变速功能,优化可以实现整个团队目标。在该转换时,我们提出了一种基于基于认知的自适应优化(CAO)算法的分布式方法,其能够近似每个机器人成本函数的演变并充分优化其决策变量(机器人动作)。后者可以通过在线学习来实现影响特派团目标的特定特定特征。总体而言,低复杂性算法可以简单地结合任何类型的操作约束,是容错的,并且可以适当地解决时变的成本函数。这种方法的基石是它与块坐标血管下降算法相同的收敛特征。该算法在多种方案下的三个异构模拟设置中评估,针对通用和特定于问题的算法。源代码可在\ url {https://github.com/athakapo/a-distributed-plug-lobot-applications}中获得。
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译
本文介绍了一种新的方法,为入境驾驶场景的自动车辆产生最佳轨迹。该方法使用两相优化过程计算轨迹。在第一阶段中,优化过程产生具有不同的曲率的闭形驾驶导向线。在第二阶段,该过程将驱动导向线作为输入输出,输出沿着导向线驾驶的车辆的动态可行,混蛋和时间最佳轨迹。该方法对于在弯曲道路上产生轨迹特别有用,其中车辆需要频繁加速和减速以适应离心机加速限制。
translated by 谷歌翻译
本文详细说明了实际确保远程赛车赛车的安全性的理论和实施。我们在超过100公里/小时的速度上展示了7“赛车无人机的强大和实用性保证,仅在10克微控制器上仅使用在线计算。为了实现这一目标,我们利用了控制屏障功能的框架(CBFS)保证安全编码为前向集不变性。为了使该方法实际上是适用的,我们介绍了一个隐式定义的CBF,它利用备份控制器来实现可确保安全性的渐变评估。应用于硬件的方法,这是平滑,最微不足道的改变飞行员的所需输入,使他们能够在不担心崩溃的情况下推动他们的无人机的极限。此外,该方法与预先存在的飞行控制器配合工作,导致在没有附近的安全风险时不妨碍飞行。额外的效益包括安全性和稳定性在失去视线或在无线电故障时失去时的无人机。
translated by 谷歌翻译
在本文中,我们研究了加强学习问题的安全政策的学习。这是,我们的目标是控制我们不知道过渡概率的马尔可夫决策过程(MDP),但我们通过经验访问样品轨迹。我们将安全性定义为在操作时间内具有高概率的期望安全集中的代理。因此,我们考虑受限制的MDP,其中限制是概率。由于没有直接的方式来优化关于加强学习框架中的概率约束的政策,因此我们提出了对问题的遍历松弛。拟议的放松的优点是三倍。 (i)安全保障在集界任务的情况下保持,并且它们保持在一个给定的时间范围内,以继续进行任务。 (ii)如果政策的参数化足够丰富,则约束优化问题尽管其非凸起具有任意小的二元间隙。 (iii)可以使用标准策略梯度结果和随机近似工具容易地计算与安全学习问题相关的拉格朗日的梯度。利用这些优势,我们建立了原始双算法能够找到安全和最佳的政策。我们在连续域中的导航任务中测试所提出的方法。数值结果表明,我们的算法能够将策略动态调整到环境和所需的安全水平。
translated by 谷歌翻译
在本文中,我们为多机器人系统提供了一种分散和无通信的碰撞避免方法,该系统考虑了机器人定位和感测不确定性。该方法依赖于计算每个机器人的不确定感知安全区域,以在高斯分布的不确定性的假设下在环境中导航的其他机器人和环境中的静态障碍物。特别地,在每次步骤中,我们为每个机器人构建一个机器人约束的缓冲不确定性感知的voronoI细胞(B-UAVC)给出指定的碰撞概率阈值。通过将每个机器人的运动约束在其对应的B-UAVC内,即机器人和障碍物之间的碰撞概率仍然可以实现概率碰撞避免。所提出的方法是分散的,无通信,可扩展,具有机器人的数量和机器人本地化和感测不确定性的强大。我们将方法应用于单积分器,双积分器,差动驱动机器人和具有一般非线性动力学的机器人。对地面车辆,四轮车和异质机器人团队进行广泛的模拟和实验,以分析和验证所提出的方法。
translated by 谷歌翻译
许多机器人任务需要高维传感器,如相机和激光雷达,以导航复杂的环境,但是在这些传感器周围开发认可的安全反馈控制器仍然是一个具有挑战性的公开问题,特别是在涉及学习时的开放问题。以前的作品通过分离感知和控制子系统并对感知子系统的能力做出强烈的假设来证明了感知反馈控制器的安全性。在这项工作中,我们介绍了一种新的启用学习的感知反馈混合控制器,在那里我们使用控制屏障函数(CBF)和控制Lyapunov函数(CLF)来显示全堆叠感知反馈控制器的安全性和活力。我们使用神经网络直接在机器人的观察空间中学习全堆栈系统的CBF和CLF,而无需承担基于感知的状态估计器。我们的混合控制器称为基因座(使用切换启用了学习的观察反馈控制),可以安全地导航未知的环境,始终如一地达到其目标,并将安全性安全地概括为培训数据集之外的环境。我们在模拟和硬件中展示了实验中的轨迹,在那里它使用LIDAR传感器的反馈成功地导航变化环境。
translated by 谷歌翻译
本文提出了一种方法,该方法使机器人能够从人类的定向校正中逐渐学习控制目标函数。现有方法从人类的幅度校正中学习,并且需要人类仔细选择校正幅度,否则可以很容易地导致过度校正和学习效率低下。所提出的方法仅需要人类的定向校正 - 校正,该校正仅指示控制变化的方向,而不会指示其幅度 - 在机器人运动期间的某些时间实例应用。我们仅假设人类的校正,无论其幅度如何,在一个方向上指向机器人当前运动相对于隐含控制目标函数。因此,人类的有效修正总是占校正空间的一半。所提出的方法使用校正的方向来基于切割平面技术更新目标函数的估计。我们建立了理论结果,以证明该过程保证了学习目标函数的收敛到隐含的目标。通过数值例子,对两个人机游戏的用户研究以及真实世界的四轮车实验进行了拟议的方法。结果证实了该方法的收敛性,并表明该方法更有效(成功率较高),有效/轻松(需要较少人力校正),可访问(更少的早期浪费的试验)而不是最先进的机器人交互式学习计划。
translated by 谷歌翻译
路径规划是自治车辆运动规划中的关键组成部分。路径指定车辆将旅行的几何形状,因此,对安全和舒适的车辆运动至关重要。对于城市驾驶场景,自治车辆需要能够在杂乱的环境中导航,例如,道路部分被侧面挡住的车辆/障碍物。如何生成运动学上可行和平滑的路径,可以避免复杂环境中的碰撞,使路径规划有挑战性的问题。在本文中,我们提出了一种新型二次编程方法,可以产生分辨率完全碰撞避免能力的最佳路径。
translated by 谷歌翻译
多机器人系统通过整体对应物提供增强的能力,但它们以增加的协调复杂化。为了减少复杂性并使文献中的多机器人运动规划(MRMP)方法采用牺牲最优性或动态可行性的解耦方法采用解耦方法。在本文中,我们提出了一种凸起方法,即“抛物线弛豫”,为所有机器人的耦合关节空间中MRMP产生最佳和动态可行的轨迹。我们利用建议的放松来解决问题复杂性,并在极端集群环境中规划超过一百个机器人的计算途径。我们采取了一种多级优化方法,包括i)数学地配制MRMP作为非凸优化,II)将问题提升到更高的尺寸空间,III)通过所提出的计算有效的抛物线松弛和IV凸出问题。使用迭代搜索惩罚,以确保对原始问题的可行性和近最佳解决方案的可行性和恢复。我们的数值实验表明,所提出的方法能够在比最先进的成功率上具有更高成功率的挑战运动规划问题的最佳和动态可行的轨迹,但在高度密集的环境中,在一百个机器人中仍然在计算上仍然在计算上。 。
translated by 谷歌翻译
轨迹重新恢复是导航动态环境的多机器人团队的关键问题。我们呈现RLSS(使用线性空间分离重新恢复):用于合作多机器人团队的实时轨迹重新算法,该团队使用线性空间分离来强制执行安全性。我们的算法显式处理机器人的动态限制,完全分布,并且对环境变化,机器人故障和轨迹跟踪错误很健康。它不需要机器人之间的通信,并且仅依赖于仅在局部相对测量上。我们展示了算法在模拟中实时工作,并使用物理机器人实验。我们将算法基于模型预测控制的最先进的在线轨迹生成算法,并显示了我们的算法导致高度约束环境中的碰撞显着较少,并有效地避免死锁。
translated by 谷歌翻译