我们提出了Adios,这是一个用于自我监督学习的遮罩图像模型(MIM)框架,同时使用对抗性目标学习掩盖功能和图像编码器。对图像编码器进行了训练,以最大程度地减少原始图像的表示形式与蒙版图像的表示之间的距离。相反,掩蔽函数旨在最大化此距离。阿迪奥斯(Adios)始终改进有关各种任务和数据集的最先进的自我监督学习(SSL)方法 - 包括Imagenet100和STL10上的分类,CIFAR10/100上的转移学习,Flowers102和Inaturalist,以及鲁棒性在背景挑战中进行了评估(Xiao等,2021) - 同时产生语义意义的面具。与MAE,BEIT和IBOT等现代MIM模型不同,Adios不依赖视觉变压器的图像斑点令牌构造,并且可以用卷积的骨架来实现。我们进一步证明,与对流行MIM模型中使用的掩盖方案相比,阿迪奥斯学到的面具在改善SSL方法的表示方面更有效。
translated by 谷歌翻译
蒙面图像建模(MIM)在各种视觉任务上取得了令人鼓舞的结果。但是,学到的表示形式的有限可区分性表现出来,使一个更强大的视力学习者还有很多值得一试。为了实现这一目标,我们提出了对比度蒙面的自动编码器(CMAE),这是一种新的自我监督的预训练方法,用于学习更全面和有能力的视觉表示。通过详细统一的对比度学习(CL)和掩盖图像模型(MIM),CMAE利用了它们各自的优势,并以强大的实例可辨别性和局部的可感知来学习表示形式。具体而言,CMAE由两个分支组成,其中在线分支是不对称的编码器编码器,而目标分支是动量更新的编码器。在培训期间,在线编码器从蒙面图像的潜在表示中重建了原始图像,以学习整体特征。馈送完整图像的目标编码器通过其在线学习通过对比度学习增强了功能可区分性。为了使CL与MIM兼容,CMAE引入了两个新组件,即用于生成合理的正视图和特征解码器的像素移位,以补充对比度对的特征。多亏了这些新颖的设计,CMAE可以有效地提高了MIM对应物的表示质量和转移性能。 CMAE在图像分类,语义分割和对象检测的高度竞争基准上实现了最先进的性能。值得注意的是,CMAE-BASE在Imagenet上获得了$ 85.3 \%$ $ TOP-1的准确性和$ 52.5 \%$ MIOU的ADE20K,分别超过了$ 0.7 \%\%$ $和$ 1.8 \%$ $。代码将公开可用。
translated by 谷歌翻译
Recent methods in self-supervised learning have demonstrated that masking-based pretext tasks extend beyond NLP, serving as useful pretraining objectives in computer vision. However, existing approaches apply random or ad hoc masking strategies that limit the difficulty of the reconstruction task and, consequently, the strength of the learnt representations. We improve upon current state-of-the-art work in learning adversarial masks by proposing a new framework that generates masks in a sequential fashion with different constraints on the adversary. This leads to improvements in performance on various downstream tasks, such as classification on ImageNet100, STL10, and CIFAR10/100 and segmentation on Pascal VOC. Our results further demonstrate the promising capabilities of masking-based approaches for SSL in computer vision.
translated by 谷歌翻译
尽管最近通过剩余网络的代表学习中的自我监督方法取得了进展,但它们仍然对ImageNet分类基准进行了高度的监督学习,限制了它们在性能关键设置中的适用性。在MITROVIC等人的现有理论上洞察中建立2021年,我们提出了RELICV2,其结合了明确的不变性损失,在各种适当构造的数据视图上具有对比的目标。 Relicv2在ImageNet上实现了77.1%的前1个分类准确性,使用线性评估使用Reset50架构和80.6%,具有较大的Reset型号,优于宽边缘以前的最先进的自我监督方法。最值得注意的是,RelicV2是使用一系列标准Reset架构始终如一地始终优先于类似的对比较中的监督基线的第一个表示学习方法。最后,我们表明,尽管使用Reset编码器,Relicv2可与最先进的自我监控视觉变压器相媲美。
translated by 谷歌翻译
变形金刚和蒙版语言建模在计算机视觉中很快被视为视觉变压器和蒙版图像建模(MIM)。在这项工作中,我们认为由于图像中令牌的数量和相关性,图像令牌掩盖与文本中的令牌掩盖有所不同。特别是,为了为MIM产生具有挑战性的借口任务,我们主张从随机掩盖到知情掩盖的转变。我们在基于蒸馏的MIM的背景下开发并展示了这一想法,其中教师变压器编码器生成了一个注意力图,我们用它来指导学生为学生指导掩盖。因此,我们引入了一种新颖的掩蔽策略,称为注意引导蒙版(ATTMASK),我们证明了其对基于密集蒸馏的MIM以及基于普通蒸馏的自然剥离的自助力学习的有效性。我们确认ATTMASK可以加快学习过程,并提高各种下游任务的性能。我们在https://github.com/gkakogeorgiou/attmask上提供实现代码。
translated by 谷歌翻译
语言变形金刚的成功主要归因于屏蔽语言建模(MLM)的借口任务,其中文本首先被致以语义有意义的作品。在这项工作中,我们研究了蒙面图像建模(MIM),并指出使用语义有意义的视觉销售器的优缺点。我们提出了一个自我监督的框架IBOT,可以使用在线标记器执行蒙版预测。具体而言,我们在蒙面的补丁令牌上进行自我蒸馏,并将教师网络作为在线标记器,以及在课堂上的自蒸馏来获取视觉语义。在线销售器与MIM目标和分配的多级培训管道共同学习,销售器需要预先预先培训。通过在Imagenet-1K上达到81.6%的线性探测精度和86.3%的微调精度来展示IBOT的突出。除了最先进的图像分类结果之外,我们强调了新兴的局部语义模式,这有助于模型对共同损坏获得强大的鲁棒性,并在密集的下游任务中实现领先的结果,例如,对象检测,实例分割和语义细分。
translated by 谷歌翻译
Masked image modelling (e.g., Masked AutoEncoder) and contrastive learning (e.g., Momentum Contrast) have shown impressive performance on unsupervised visual representation learning. This work presents Masked Contrastive Representation Learning (MACRL) for self-supervised visual pre-training. In particular, MACRL leverages the effectiveness of both masked image modelling and contrastive learning. We adopt an asymmetric setting for the siamese network (i.e., encoder-decoder structure in both branches), where one branch with higher mask ratio and stronger data augmentation, while the other adopts weaker data corruptions. We optimize a contrastive learning objective based on the learned features from the encoder in both branches. Furthermore, we minimize the $L_1$ reconstruction loss according to the decoders' outputs. In our experiments, MACRL presents superior results on various vision benchmarks, including CIFAR-10, CIFAR-100, Tiny-ImageNet, and two other ImageNet subsets. Our framework provides unified insights on self-supervised visual pre-training and future research.
translated by 谷歌翻译
最近,蒙面图像建模(MIM)在自我监视的视觉识别方面取得了巨大的成功。但是,作为一个基于重建的框架,了解MIM的工作原理仍然是一个悬而未决的问题,因为MIM与以前研究过的暹罗方法(例如对比度学习)有很大不同。在本文中,我们提出了一个新的观点:MIM隐含地学习咬合不变特征,这与其他暹罗方法类似,而后者则学习其他不变性。通过将MIM公式放松为等效的暹罗形式,可以用常规方法在统一框架中解释MIM方法,其中只有a)数据转换,即学习什么不变性,b)相似性测量是不同的。此外,以Mae(He等)为MIM的一个代表性示例,我们从经验上发现MIM模型的成功与选择相似性功能的选择有点联系,但是蒙面图像引入了学习的咬合不变特征 - 事实证明对于视觉变压器来说,这是一个受欢迎的初始化,即使学习的功能可能不太语义。我们希望我们的发现能够激发研究人员在计算机视觉社区中开发更强大的自我监督方法。
translated by 谷歌翻译
由于其最近在减少监督学习的差距方面取得了成功,自我监督的学习方法正在增加计算机愿景的牵引力。在自然语言处理(NLP)中,自我监督的学习和变形金刚已经是选择的方法。最近的文献表明,变压器也在计算机愿景中越来越受欢迎。到目前为止,当使用大规模监督数据或某种共同监督时,视觉变压器已被证明可以很好地工作。在教师网络方面。这些监督的普试视觉变压器在下游任务中实现了非常好的变化,变化最小。在这项工作中,我们调查自我监督学习的预用图像/视觉变压器,然后使用它们进行下游分类任务的优点。我们提出了自我监督的视觉变压器(坐在)并讨论了几种自我监督的培训机制,以获得借口模型。静坐的架构灵活性允许我们将其用作自动统计器,并无缝地使用多个自我监控任务。我们表明,可以在小规模数据集上进行预训练,以便在小型数据集上进行下游分类任务,包括几千个图像而不是数百万的图像。使用公共协议对所提出的方法进行评估标准数据集。结果展示了变压器的强度及其对自我监督学习的适用性。我们通过大边缘表现出现有的自我监督学习方法。我们还观察到坐着很好,很少有镜头学习,并且还表明它通过简单地训练从坐的学到的学习功能的线性分类器来学习有用的表示。预先训练,FineTuning和评估代码将在以下:https://github.com/sara-ahmed/sit。
translated by 谷歌翻译
自我监督学习的最新进展证明了多种视觉任务的有希望的结果。高性能自我监督方法中的一个重要成分是通过培训模型使用数据增强,以便在嵌入空间附近的相同图像的不同增强视图。然而,常用的增强管道整体地对待图像,忽略图像的部分的语义相关性-e.g。主题与背景 - 这可能导致学习杂散相关性。我们的工作通过调查一类简单但高度有效的“背景增强”来解决这个问题,这鼓励模型专注于语义相关内容,劝阻它们专注于图像背景。通过系统的调查,我们表明背景增强导致在各种任务中跨越一系列最先进的自我监督方法(MOCO-V2,BYOL,SWAV)的性能大量改进。 $ \ SIM $ + 1-2%的ImageNet收益,使得与监督基准的表现有关。此外,我们发现有限标签设置的改进甚至更大(高达4.2%)。背景技术增强还改善了许多分布换档的鲁棒性,包括天然对抗性实例,想象群-9,对抗性攻击,想象成型。我们还在产生了用于背景增强的显着掩模的过程中完全无监督的显着性检测进展。
translated by 谷歌翻译
本文探讨了贝尔视觉变压器预训练的更好的码本。最近的工作成功地转移了从NLP到视野领域的BERT预训练。它直接采用一个简单的离散VAE作为视觉销售器,但尚未考虑由此产生的视觉令牌的语义水平。相比之下,NLP字段中的离散令牌是自然的高度语义。这种差异激励我们学习一个感知码本。我们惊奇地找到了一个简单而有效的想法:在DVAE训练期间强制执行感知相似性。我们证明,所提出的感知码本生成的视觉令牌确实表现出更好的语义含义,随后有助于预训练在各种下游任务中实现卓越的转移性能。例如,我们在Imagenet-1K上实现了84.5前1个精度,vit-B骨干,优于竞争方法Beit +1.3,具有相同的训练纪元。它还可以通过+1.3框AP和+1.0掩模AP,在ADE20K上的语义细分,在ADE20K上提高对象检测和分割任务的性能,+1.0 miou,代码和型号将在\ url {https:// github.com/microsoft/peco}。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
蒙面的自动编码器是可扩展的视觉学习者,因为Mae \ Cite {He2022masked}的标题表明,视觉中的自我监督学习(SSL)可能会采用与NLP中类似的轨迹。具体而言,具有蒙版预测(例如BERT)的生成借口任务已成为NLP中的事实上的标准SSL实践。相比之下,他们的歧视性对应物(例如对比度学习)掩埋了视力中的生成方法的早期尝试;但是,蒙版图像建模的成功已恢复了屏蔽自动编码器(过去通常被称为DeNosing AutoCoder)。作为在NLP中与Bert弥合差距的一个里程碑,蒙面自动编码器吸引了对SSL在视觉及其他方面的前所未有的关注。这项工作对蒙面自动编码器进行了全面的调查,以洞悉SSL的有希望的方向。作为第一个使用蒙版自动编码器审查SSL的人,这项工作通过讨论其历史发展,最新进度以及对不同应用的影响,重点介绍其在视觉中的应用。
translated by 谷歌翻译
It has been witnessed that masked image modeling (MIM) has shown a huge potential in self-supervised learning in the past year. Benefiting from the universal backbone vision transformer, MIM learns self-supervised visual representations through masking a part of patches of the image while attempting to recover the missing pixels. Most previous works mask patches of the image randomly, which underutilizes the semantic information that is beneficial to visual representation learning. On the other hand, due to the large size of the backbone, most previous works have to spend much time on pre-training. In this paper, we propose \textbf{Attention-driven Masking and Throwing Strategy} (AMT), which could solve both problems above. We first leverage the self-attention mechanism to obtain the semantic information of the image during the training process automatically without using any supervised methods. Masking strategy can be guided by that information to mask areas selectively, which is helpful for representation learning. Moreover, a redundant patch throwing strategy is proposed, which makes learning more efficient. As a plug-and-play module for masked image modeling, AMT improves the linear probing accuracy of MAE by $2.9\% \sim 5.9\%$ on CIFAR-10/100, STL-10, Tiny ImageNet, and ImageNet-1K, and obtains an improved performance with respect to fine-tuning accuracy of MAE and SimMIM. Moreover, this design also achieves superior performance on downstream detection and segmentation tasks.
translated by 谷歌翻译
我们提出了引导蒙面的自动编码器(bootmae),这是一种新的视觉BERT预训练方法。 Bootmae用两个核心设计改进了原始的蒙版自动编码器(MAE):1)动量编码器,该动量编码器可作为额外的BERT预测目标提供在线功能; 2)试图降低编码器的压力以记住目标特定信息的靶向解码器。第一个设计的动机是通过观察到的,即使用预定的MAE提取特征,因为掩盖令牌的BERT预测目标可以实现更好的预训练性能。因此,我们与原始的MAE编码器并行添加了一个动量编码器,该编码器通过将其自己的表示作为BERT预测目标来引导预处理性能。在第二个设计中,我们将特定于目标的信息(例如,未掩盖贴片的像素值)直接传达到解码器中,以减少记住目标特定信息的编码器的压力。因此,编码器专注于语义建模,这是BERT预训练的目的,并且不需要浪费其在记住与预测目标相关的未掩盖令牌的信息时的能力。通过广泛的实验,我们的Bootmae在ImageNet-1k上获得了$ 84.2 \%$ $ $ $+0.8 \%$在同一预训练时期。 Bootmae还获得了$+1.0 $ MIOU在ADE20K上的语义细分和$+1.3 $ box ap,$+1.4 $+1.4 $ bask ap改进对象检测和可可数据集上的细分。代码在https://github.com/lightdxy/bootmae上发布。
translated by 谷歌翻译
Autoregressive language modeling (ALM) have been successfully used in self-supervised pre-training in Natural language processing (NLP). However, this paradigm has not achieved comparable results with other self-supervised approach in computer vision (e.g., contrastive learning, mask image modeling). In this paper, we try to find the reason why autoregressive modeling does not work well on vision tasks. To tackle this problem, we fully analyze the limitation of visual autoregressive methods and proposed a novel stochastic autoregressive image modeling (named SAIM) by the two simple designs. First, we employ stochastic permutation strategy to generate effective and robust image context which is critical for vision tasks. Second, we create a parallel encoder-decoder training process in which the encoder serves a similar role to the standard vision transformer focus on learning the whole contextual information, and meanwhile the decoder predicts the content of the current position, so that the encoder and decoder can reinforce each other. By introducing stochastic prediction and the parallel encoder-decoder, SAIM significantly improve the performance of autoregressive image modeling. Our method achieves the best accuracy (83.9%) on the vanilla ViT-Base model among methods using only ImageNet-1K data. Transfer performance in downstream tasks also show that our model achieves competitive performance.
translated by 谷歌翻译
本文显示屏蔽的自动化器(MAE)是可扩展的自我监督学习者,用于计算机愿景。我们的MAE方法很简单:我们掩盖输入图像的随机补丁并重建缺失像素。它基于两个核心设计。首先,我们开发一个不对称的编码器解码器架构,其中编码器仅在掩码的可见子集(没有掩码令牌)上,以及重量解码器,该重量解码器从潜像和掩码令牌重建原始图像。其次,我们发现掩蔽了高比例的输入图像,例如,75%,产生非凡和有意义的自我监督任务。耦合这两种设计使我们能够有效且有效地培训大型模型:我们加速培训(3倍或更多)并提高准确性。我们可扩展的方法允许学习概括的高容量模型:例如,Vanilla Vit-Maxim模型在使用Imagenet-1K数据的方法中实现最佳准确性(87.8%)。下游任务中的转移性能优于监督预培训并显示有前途的缩放行为。
translated by 谷歌翻译
通过自学学习的视觉表示是一项极具挑战性的任务,因为网络需要在没有监督提供的主动指导的情况下筛选出相关模式。这是通过大量数据增强,大规模数据集和过量量的计算来实现的。视频自我监督学习(SSL)面临着额外的挑战:视频数据集通常不如图像数据集那么大,计算是一个数量级,并且优化器所必须通过的伪造模式数量乘以几倍。因此,直接从视频数据中学习自我监督的表示可能会导致次优性能。为了解决这个问题,我们建议在视频表示学习框架中利用一个以自我或语言监督为基础的强大模型,并在不依赖视频标记的数据的情况下学习强大的空间和时间信息。为此,我们修改了典型的基于视频的SSL设计和目标,以鼓励视频编码器\ textit {subsume}基于图像模型的语义内容,该模型在通用域上训练。所提出的算法被证明可以更有效地学习(即在较小的时期和较小的批次中),并在单模式SSL方法中对标准下游任务进行了新的最新性能。
translated by 谷歌翻译
自我监督的预制是自然语言处理模型的首选方法,在许多愿景任务中迅速获得普及。最近,自我监督的预借鉴已经显示出胜过许多下游视觉应用的预测,标志着该地区的里程碑。这种优越性归因于传达多个概念的训练图像的不完全标记的负面影响,而是使用单个主要类标签进行注释。虽然自我监督的学习(SSL)原则上没有这种限制,但促进SSL的借口任务的选择是通过向单个概念输出驱动学习过程来实现这种缺点。本研究旨在调查在不使用标签的情况下建模图像中存在的所有概念的可能性。在这方面,所提出的SSL帧工作MC-SSL0.0是迈向多概念自我监督学习(MC-SSL)的步骤,其超出了在图像中建模的单一主导标签,以有效地利用来自所有概念的所有概念在里面。 MC-SSL0.0由两个核心设计概念,组屏蔽模型学习和学习伪概念,用于使用势头(教师学生)框架的数据令牌。多标签和多类图像分类下游任务的实验结果表明,MC-SSL0.0不仅超越了现有的SSL方法,而且超越了监督转移学习。源代码将公开可供社区培训更大的语料库。
translated by 谷歌翻译