了解文本中表达的态度,也称为姿态检测,在旨在在线检测虚假信息的系统中起重要作用,无论是错误信息(无意的假)或虚假信息(故意错误地蔓延,恶意意图)。姿态检测已经以不同的方式在文献中框架,包括(a)作为事实检查,谣言检测和检测先前的事实检查的权利要求,或(b)作为其自己的任务的组件;在这里,我们看看两者。虽然已经进行了与其他相关任务的突出姿态检测,但诸如论证挖掘和情绪分析之类的其他相关任务,但没有调查姿态检测和错误和缺陷检测之间的关系。在这里,我们的目标是弥合这个差距。特别是,我们在焦点中审查和分析了该领域的现有工作,焦点中的错误和不忠实,然后我们讨论了汲取的经验教训和未来的挑战。
translated by 谷歌翻译
假新闻的迅速增加,这对社会造成重大损害,触发了许多假新闻相关研究,包括开发假新闻检测和事实验证技术。这些研究的资源主要是从Web数据中获取的公共数据集。我们通过三个观点调查了与假新闻研究相关的118个数据集:(1)假新闻检测,(2)事实验证,(3)其他任务;例如,假新闻和讽刺检测分析。我们还详细描述了他们的利用任务及其特征。最后,我们突出了假新闻数据集建设中的挑战以及解决这些挑战的一些研究机会。我们的调查通过帮助研究人员找到合适的数据集来促进假新闻研究,而无需重新发明轮子,从而提高了深度的假新闻研究。
translated by 谷歌翻译
了解用户对话中的毒性无疑是一个重要问题。正如在以前的工作中所说的那样,解决“隐秘”或隐含毒性案件特别困难,需要上下文。以前很少有研究已经分析了会话语境在人类感知或自动检测模型中的影响。我们深入探讨这两个方向。我们首先分析现有的上下文数据集,并得出结论,人类的毒性标记一般受到对话结构,极性和主题的影响。然后,我们建议通过引入(a)神经架构来将这些发现带入计算检测模型中,以了解会话结构的语境毒性检测,以及(b)可以帮助模拟语境毒性检测的数据增强策略。我们的结果表明了了解谈话结构的神经架构的令人鼓舞的潜力。我们还表明,这些模型可以从合成数据中受益,尤其是在社交媒体领域。
translated by 谷歌翻译
假新闻是制作作为真实的信息,有意欺骗读者。最近,依靠社交媒体的人民币为新闻消费的人数显着增加。由于这种快速增加,错误信息的不利影响会影响更广泛的受众。由于人们对这种欺骗性的假新闻的脆弱性增加,在早期阶段检测错误信息的可靠技术是必要的。因此,作者提出了一种基于图形的基于图形的框架社会图,其具有多头关注和发布者信息和新闻统计网络(SOMPS-Net),包括两个组件 - 社交交互图(SIG)和发布者和新闻统计信息(PNS)。假设模型在HealthStory DataSet上进行了实验,并在包括癌症,阿尔茨海默,妇产科和营养等各种医疗主题上推广。 Somps-Net明显优于其他基于现实的图表的模型,在HealthStory上实验17.1%。此外,早期检测的实验表明,Somps-Net预测的假新闻文章在其广播仅需8小时内为79%确定。因此,这项工作的贡献奠定了在早期阶段捕获多种医疗主题的假健康新闻的基础。
translated by 谷歌翻译
社交媒体平台为挖掘公众舆论提供了众多社会兴趣问题的金矿。意见采矿是一个问题,可以通过捕获和汇总各个社交媒体职位的立场,作为支持,反对或者在手头上的问题上进行。虽然大多数姿态检测工作已经调查了具有有限时间覆盖率的数据集,但最近提高了调查纵向数据集的兴趣。在新数据中观察到的语言和行为模式中的演变动态,依次适应姿态检测系统来处理变化。在本调查论文中,我们研究了计算语言学与数字媒体人类交流的交叉口。在考虑动态的新兴研究中,我们在探索不同的语义和语用因素,探讨了影响语言数据的不同语义和语用因素,特别是审查。我们进一步讨论了在社交媒体中捕获姿态动态的当前方向。我们组织处理姿态动态的挑战,确定公开挑战,并在三个关键方面讨论未来的方向:话语,背景和影响。
translated by 谷歌翻译
随着我们对社交媒体平台和Web服务的依赖日益增加,剥削者将这些平台视为操纵我们的思想广告行动的机会。这些平台已成为社交机器人账户的开放游乐场。社交机器人不仅学习人类谈话,方式和存在,还可以操纵舆论,充当诈骗者,操纵股票市场等。有证据表明,人们的意见和思想可能是对民主的巨大威胁。识别和预防释放或创建这些机器人的竞选活动已经变得至关重要。我们本文的目标是利用网络挖掘技术来帮助检测在诸如Twitter等社交媒体平台上的假机器人,从而减轻了不奉献的传播。
translated by 谷歌翻译
与令人印象深刻的进步触动了我们社会的各个方面,基于深度神经网络(DNN)的AI技术正在带来越来越多的安全问题。虽然在考试时间运行的攻击垄断了研究人员的初始关注,但是通过干扰培训过程来利用破坏DNN模型的可能性,代表了破坏训练过程的可能性,这是破坏AI技术的可靠性的进一步严重威胁。在后门攻击中,攻击者损坏了培训数据,以便在测试时间诱导错误的行为。然而,测试时间误差仅在存在与正确制作的输入样本对应的触发事件的情况下被激活。通过这种方式,损坏的网络继续正常输入的预期工作,并且只有当攻击者决定激活网络内隐藏的后门时,才会发生恶意行为。在过去几年中,后门攻击一直是强烈的研究活动的主题,重点是新的攻击阶段的发展,以及可能对策的提议。此概述文件的目标是审查发表的作品,直到现在,分类到目前为止提出的不同类型的攻击和防御。指导分析的分类基于攻击者对培训过程的控制量,以及防御者验证用于培训的数据的完整性,并监控DNN在培训和测试中的操作时间。因此,拟议的分析特别适合于参考他们在运营的应用方案的攻击和防御的强度和弱点。
translated by 谷歌翻译
由于信息和错误信息都可以在现代媒体生态系统中传播的速度,事实检查变得越来越重要。因此,研究人员一直在探索如何自动检查,使用基于自然语言处理,机器学习,知识表示以及数据库来自动检查的技术,以自动预测所称的索赔的真实性。在本文中,我们从自然语言处理中调查了自动检查源,并讨论其与相关任务和学科的联系。在此过程中,我们概述了现有数据集和模型,旨在统一给出的各种定义和识别共同概念。最后,我们突出了未来研究的挑战。
translated by 谷歌翻译
社交审核已经占据了网络,成为产品信息的合理来源。人和企业使用此类信息进行决策。企业还利用社交信息使用单个用户,用户组或培训的机器人传播伪信息以产生欺诈内容。许多研究提出了基于用户行为和审查文本来解决欺诈检测挑战的方法。为了提供详尽的文献综述,使用框架进行审查的社会欺诈检测,该框架考虑了三个关键组件:审查本身,执行审核的用户以及正在审查的项目。作为组件表示提取的特征,基于行为,基于文本的特征及其组合提供了一个特征明智的审查。通过此框架,展示了全面的方法概述,包括监督,半监督和无监督的学习。欺诈检测的监督方法被引入并分为两个子类别;古典,深入学习。解释了标记的数据集缺乏,并提出了潜在的解决方案。为了帮助该地区的新研究人员发展更好的理解,在建议的系统框架的每一步中提供了一个主题分析和未来方向的概述。
translated by 谷歌翻译
文本样式传输是自然语言生成中的重要任务,旨在控制生成的文本中的某些属性,例如礼貌,情感,幽默和许多其他特性。它在自然语言处理领域拥有悠久的历史,最近由于深神经模型带来的有希望的性能而重大关注。在本文中,我们对神经文本转移的研究进行了系统调查,自2017年首次神经文本转移工作以来跨越100多个代表文章。我们讨论了任务制定,现有数据集和子任务,评估,以及丰富的方法在存在并行和非平行数据存在下。我们还提供关于这项任务未来发展的各种重要主题的讨论。我们的策据纸张列表在https://github.com/zhijing-jin/text_style_transfer_survey
translated by 谷歌翻译
在过去的十年中,计算机愿景,旨在了解视觉世界的人工智能分支,从简单地识别图像中的物体来描述图片,回答有关图像的问题,以及围绕物理空间的机器人操纵甚至产生新的视觉内容。随着这些任务和应用程序的现代化,因此依赖更多数据,用于模型培训或评估。在本章中,我们展示了新颖的互动策略可以为计算机愿景提供新的数据收集和评估。首先,我们提出了一种众群界面,以通过数量级加速付费数据收集,喂养现代视觉模型的数据饥饿性质。其次,我们探索使用自动社交干预措施增加志愿者贡献的方法。第三,我们开发一个系统,以确保人类对生成视觉模型的评估是可靠的,实惠和接地在心理物理学理论中。我们结束了人机互动的未来机会,以帮助计算机愿景。
translated by 谷歌翻译
在宣传,新闻和社交媒体中的虚假,不准确和误导信息中,现实世界的问题应答(QA)系统面临综合和推理相互矛盾的挑战,以获得正确答案的挑战。这种紧迫性导致需要使QA系统对错误信息的强大,这是一个先前未开发的主题。我们通过调查与实际和虚假信息混合的矛盾的情况下,通过调查QA模型的行为来研究对QA模型的错误信息的风险。我们为此问题创建了第一个大规模数据集,即对QA,其中包含超过10K的人写和模型生成的矛盾的上下文。实验表明,QA模型易受误导的背景下的攻击。为了防御这种威胁,我们建立一个错误信息感知的QA系统作为一个反措施,可以以联合方式整合问题应答和错误信息检测。
translated by 谷歌翻译
普遍的对策扰动是图像不可思议的和模型 - 无关的噪声,当添加到任何图像时可以误导训练的深卷积神经网络进入错误的预测。由于这些普遍的对抗性扰动可以严重危害实践深度学习应用的安全性和完整性,因此现有技术使用额外的神经网络来检测输入图像源的这些噪声的存在。在本文中,我们展示了一种攻击策略,即通过流氓手段激活(例如,恶意软件,木马)可以通过增强AI硬件加速器级的对抗噪声来绕过这些现有对策。我们使用Conv2D功能软件内核的共同仿真和FuseSoC环境下的硬件的Verilog RTL模型的共同仿真,展示了关于几个深度学习模型的加速度普遍对抗噪声。
translated by 谷歌翻译
电报是全球最常用的即时消息传递应用之一。其成功之所以在于提供高隐私保护和社交网络,如频道 - 虚拟房间,其中只有管理员可以发布和广播到所有订户的消息。然而,这些相同的功能促成了边界活动的出现,并且与在线社交网络一样常见,假账户的沉重存在。通过引入频道的验证和诈骗标记,电报开始解决这些问题。不幸的是,问题远未解决。在这项工作中,我们通过收集35,382个不同的渠道和超过130,000,000消息来进行大规模分析电报。我们研究电报标记为验证或骗局的渠道,突出显示类比和差异。然后,我们转到未标记的频道。在这里,我们发现一些臭名昭着的活动也存在于虚拟网络的隐私保存服务,例如梳理,共享非法成人和版权保护内容。此外,我们还确定并分析了另外两种类型的渠道:克隆和假货。克隆是发布另一个频道确切内容的频道,以获得订阅者和促进服务。相反,假货是试图冒充名人或知名服务的渠道。即使是最先进的用户甚至很难确定。要自动检测假频道,我们提出了一种机器学习模型,可以以86%的准确性识别它们。最后,我们研究了Sabmyk,这是一种阴谋理论,即利用假货和克隆在达到超过1000万用户的平台上迅速传播。
translated by 谷歌翻译
我们研究了检查问题的事实,旨在识别给定索赔的真实性。具体而言,我们专注于事实提取和验证(发烧)及其伴随数据集的任务。该任务包括从维基百科检索相关文件(和句子)并验证文件中的信息是否支持或驳斥所索赔的索赔。此任务至关重要,可以是假新闻检测和医疗索赔验证等应用程序块。在本文中,我们以通过以结构化和全面的方式呈现文献来更好地了解任务的挑战。我们通过分析不同方法的技术视角并讨论发热数据集的性能结果,描述了所提出的方法,这是最熟悉的和正式结构化的数据集,就是事实提取和验证任务。我们还迄今为止迄今为止确定句子检索组件的有益损失函数的最大实验研究。我们的分析表明,采样负句对于提高性能并降低计算复杂性很重要。最后,我们描述了开放的问题和未来的挑战,我们激励了未来的任务研究。
translated by 谷歌翻译
可提供许多开源和商业恶意软件探测器。然而,这些工具的功效受到新的对抗性攻击的威胁,由此恶意软件试图使用例如机器学习技术来逃避检测。在这项工作中,我们设计了依赖于特征空间和问题空间操纵的对抗逃避攻击。它使用可扩展性导向特征选择来最大限度地通过识别影响检测的最关键的特征来最大限度地逃避。然后,我们将此攻击用作评估若干最先进的恶意软件探测器的基准。我们发现(i)最先进的恶意软件探测器容易受到简单的逃避策略,并且可以使用现成的技术轻松欺骗; (ii)特征空间操纵和问题空间混淆可以组合起来,以便在不需要对探测器的白色盒子理解的情况下实现逃避; (iii)我们可以使用解释性方法(例如,Shap)来指导特征操纵并解释攻击如何跨多个检测器传输。我们的调查结果阐明了当前恶意软件探测器的弱点,以及如何改善它们。
translated by 谷歌翻译
窃取对受控信息的攻击,以及越来越多的信息泄漏事件,已成为近年来新兴网络安全威胁。由于蓬勃发展和部署先进的分析解决方案,新颖的窃取攻击利用机器学习(ML)算法来实现高成功率并导致大量损坏。检测和捍卫这种攻击是挑战性和紧迫的,因此政府,组织和个人应该非常重视基于ML的窃取攻击。本调查显示了这种新型攻击和相应对策的最新进展。以三类目标受控信息的视角审查了基于ML的窃取攻击,包括受控用户活动,受控ML模型相关信息和受控认证信息。最近的出版物总结了概括了总体攻击方法,并导出了基于ML的窃取攻击的限制和未来方向。此外,提出了从三个方面制定有效保护的对策 - 检测,破坏和隔离。
translated by 谷歌翻译
深度神经网络容易受到来自对抗性投入的攻击,并且最近,特洛伊木马误解或劫持模型的决定。我们通过探索有界抗逆性示例空间和生成的对抗网络内的自然输入空间来揭示有界面的对抗性实例 - 通用自然主义侵害贴片的兴趣类 - 我们呼叫TNT。现在,一个对手可以用一个自然主义的补丁来手臂自己,不太恶意,身体上可实现,高效 - 实现高攻击成功率和普遍性。 TNT是普遍的,因为在场景中的TNT中捕获的任何输入图像都将:i)误导网络(未确定的攻击);或ii)迫使网络进行恶意决定(有针对性的攻击)。现在,有趣的是,一个对抗性补丁攻击者有可能发挥更大的控制水平 - 选择一个独立,自然的贴片的能力,与被限制为嘈杂的扰动的触发器 - 到目前为止只有可能与特洛伊木马攻击方法有可能干扰模型建设过程,以嵌入风险发现的后门;但是,仍然意识到在物理世界中部署的补丁。通过对大型视觉分类任务的广泛实验,想象成在其整个验证集50,000张图像中进行评估,我们展示了TNT的现实威胁和攻击的稳健性。我们展示了攻击的概括,以创建比现有最先进的方法实现更高攻击成功率的补丁。我们的结果表明,攻击对不同的视觉分类任务(CIFAR-10,GTSRB,PUBFIG)和多个最先进的深神经网络,如WieredEnet50,Inception-V3和VGG-16。
translated by 谷歌翻译
同行评审是一项广泛接受的研究评估机制,在学术出版中发挥关键作用。然而,批评已经长期升级了这种机制,主要是因为它的低效率和主体性。近年来已经看到人工智能(AI)在协助同行评审过程中的应用。尽管如此,随着人类的参与,这种限制仍然是不可避免的。在本文中,我们提出了自动化学术纸质审查(ASPR)的概念,并审查了相关的文献和技术,讨论实现全面的计算机化审查流程的可能性。我们进一步研究了现有技术ASPR的挑战。在审查和讨论的基础上,我们得出结论,ASPR的每个阶段都有相应的研究和技术。这验证了随着相关技术继续发展的长期可以实现ASPR。其实现中的主要困难在于不完美的文献解析和表示,数据不足,数据缺陷,人机互动和有缺陷的深度逻辑推理。在可预见的未来,ASPR和同行评审将在ASPR能够充分承担从人类的审查工作量之前以加强方式共存。
translated by 谷歌翻译
随着计算系统的不断增长的加工能力和大规模数据集的可用性的增加,机器学习算法导致了许多不同区域的重大突破。此开发影响了计算机安全性,在基于学习的安全系统中产生了一系列工作,例如用于恶意软件检测,漏洞发现和二进制代码分析。尽管潜力巨大,但安全性的机器学习易于细微缺陷,以破坏其性能,并使基于学习的系统可能不适合安全任务和实际部署。在本文中,我们用临界眼睛看这个问题。首先,我们确定基于学习的安全系统的设计,实现和评估中的常见缺陷。我们在过去的10年内,从顶层安全会议中进行了一项研究,确认这些陷阱在目前的安全文献中普遍存在。在一个实证分析中,我们进一步展示了个体陷阱如何导致不切实际的表现和解释,阻碍了对手的安全问题的理解。作为补救措施,我们提出了可行的建议,以支持研究人员在可能的情况下避免或减轻陷阱。此外,我们在将机器学习应用于安全性并提供进一步研究方向时确定打开问题。
translated by 谷歌翻译