树合奏是广泛使用的强大模型。但是,它们容易受到对抗性示例的影响,这些例子是故意构建的,以引起该模型的错误预测。这可以降低性能并侵蚀用户对模型的信任。通常,方法试图通过验证学习合奏或鲁棒性学习过程来缓解这个问题。我们采用另一种方法,并试图在剥离后环境中检测对抗性示例。我们为此任务提供了一种新颖的方法,该方法是通过分析看不见的示例的输出配置来工作的,这是整体组成树做出的一组预测。我们的方法与任何添加树的合奏一起使用,不需要训练单独的型号。我们在三个不同的树合奏学习者上评估我们的方法。我们从经验上表明,我们的方法目前是树形合奏的最佳对抗检测方法。
translated by 谷歌翻译
分类链是一种用于在多标签分类中建模标签依赖性的有效技术。但是,该方法需要标签的固定静态顺序。虽然理论上,任何顺序都足够了,实际上,该订单对最终预测的质量具有大量影响。动态分类链表示每个实例对分类的想法,可以动态选择预测标签的顺序。这种方法的天真实现的复杂性是禁止的,因为它需要训练一系列分类器,以满足标签的每种可能置换。为了有效地解决这个问题,我们提出了一种基于随机决策树的新方法,该方法可以动态地选择每个预测的标签排序。我们凭经验展示了下一个标签的动态选择,通过在否则不变的随机决策树模型下使用静态排序。 %和实验环境。此外,我们还展示了基于极端梯度提升树的替代方法,其允许更具目标的动态分级链训练。我们的结果表明,该变体优于随机决策树和其他基于树的多标签分类方法。更重要的是,动态选择策略允许大大加速培训和预测。
translated by 谷歌翻译
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives.This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
translated by 谷歌翻译
稀疏决策树优化是AI自成立以来的最基本问题之一,并且是可解释机器学习核心的挑战。稀疏的决策树优化是计算地的艰难,尽管自1960年代以来稳定的努力,但在过去几年中才突破问题,主要是在找到最佳稀疏决策树的问题上。然而,目前最先进的算法通常需要不切实际的计算时间和内存,以找到一些真实世界数据集的最佳或近最优树,特别是那些具有多个连续值的那些。鉴于这些决策树优化问题的搜索空间是大规模的,我们可以实际上希望找到一个稀疏的决策树,用黑盒机学习模型的准确性竞争吗?我们通过智能猜测策略来解决这个问题,可以应用于基于任何最优分支和绑定的决策树算法。我们表明,通过使用这些猜测,我们可以通过多个数量级来减少运行时间,同时提供所得树木可以偏离黑匣子的准确性和表现力的界限。我们的方法可以猜测如何在最佳决策树错误的持续功能,树的大小和下限上进行换算。我们的实验表明,在许多情况下,我们可以迅速构建符合黑匣子型号精度的稀疏决策树。总结:当您在优化时遇到困难时,就猜测。
translated by 谷歌翻译
在本文中,我们批评传统上用于评估在对抗环境中部署的机器学习模型的性能的鲁棒性措施。为了减轻稳健性的局限性,我们介绍了一种称为弹性的新措施,我们专注于其验证。特别地,我们讨论如何通过将传统的稳定性验证技术与数据无关的稳定性分析组合来验证弹性,这鉴定了模型不改变其预测的特征空间的子集。然后,我们为决策树和决策树集合介绍了一个正式的数据无关稳定性分析,我们在实验上评估公共数据集,我们利用恢复力验证。我们的结果表明,在实践中,恢复力验证是有用和可行的,产生了对标准和强大决策树模型的更可靠的安全评估。
translated by 谷歌翻译
由于算法决策对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。反事实解释可以帮助用户不仅可以理解为什么ML模型做出某些决定,还可以改变这些决定。我们框架以梯度为基础的优化任务查找反事实解释的问题,并扩展了只能应用于可微分模型的先前工作。为了适应非微弱的模型,例如树集合,我们在优化框架中使用概率模型近似。我们介绍了一种近似技术,可以有效地查找原始模型的预测的反事实解释,并表明我们的反事实示例明显更接近原始实例,而不是由专门为树集合设计的其他方法产生的实例。
translated by 谷歌翻译
Isolation forest
分类:
Most existing model-based approaches to anomaly detection construct a profile of normal instances, then identify instances that do not conform to the normal profile as anomalies. This paper proposes a fundamentally different model-based method that explicitly isolates anomalies instead of profiles normal points. To our best knowledge, the concept of isolation has not been explored in current literature. The use of isolation enables the proposed method, iForest, to exploit sub-sampling to an extent that is not feasible in existing methods, creating an algorithm which has a linear time complexity with a low constant and a low memory requirement. Our empirical evaluation shows that iForest performs favourably to ORCA, a near-linear time complexity distance-based method, LOF and Random Forests in terms of AUC and processing time, and especially in large data sets. iForest also works well in high dimensional problems which have a large number of irrelevant attributes, and in situations where training set does not contain any anomalies.
translated by 谷歌翻译
孤立森林(Iforest)近年来已经成为最受欢迎的异常检测器。它迭代地在树结构中执行轴平行的数据空间分区,以将偏差的数据对象与其他数据隔离,并且定义为异常得分的对象的隔离难度。 iForest在流行的数据集基准中显示出有效的性能,但其基于轴平行的线性数据分区无效地处理高维/非线性数据空间中的硬异常,甚至更糟糕的是,它导致了臭名昭著的算法偏见。为人工制品区域分配了出乎意料的较大的异常得分。有几个扩展的Iforest,但它们仍然专注于线性数据分区,无法有效地隔离这些硬异常。本文介绍了iforest,深层隔离森林的新型扩展。我们的方法提供了一种综合的隔离方法,可以在任何大小的子空间上任意将数据任意划分数据,从而有效地避免了线性分区中的算法偏置。此外,它仅需要随机初始化的神经网络(即,我们的方法中不需要优化)来确保分区的自由。这样一来,可以完全利用基于网络的随机表示和基于随机分区的隔离的所需随机性和多样性,以显着增强基于隔离集合的异常检测。此外,我们的方法还提供了数据型 - 敏捷的异常检测解决方案。通过简单地插入功能映射中的随机初始化的神经网络来检测不同类型数据中的异常。大量现实数据集的广泛经验结果表明,我们的模型对基于最新的隔离和基于非异常的异常检测模型有了显着改善。
translated by 谷歌翻译
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to adversarial examples. We find, however, that typical adaptive evaluations are incomplete. We demonstrate that thirteen defenses recently published at ICLR, ICML and NeurIPS-and which illustrate a diverse set of defense strategies-can be circumvented despite attempting to perform evaluations using adaptive attacks. While prior evaluation papers focused mainly on the end result-showing that a defense was ineffective-this paper focuses on laying out the methodology and the approach necessary to perform an adaptive attack. Some of our attack strategies are generalizable, but no single strategy would have been sufficient for all defenses. This underlines our key message that adaptive attacks cannot be automated and always require careful and appropriate tuning to a given defense. We hope that these analyses will serve as guidance on how to properly perform adaptive attacks against defenses to adversarial examples, and thus will allow the community to make further progress in building more robust models.
translated by 谷歌翻译
机器学习算法和深度神经网络在几种感知和控制任务中的卓越性能正在推动该行业在安全关键应用中采用这种技术,作为自治机器人和自动驾驶车辆。然而,目前,需要解决几个问题,以使深入学习方法更可靠,可预测,安全,防止对抗性攻击。虽然已经提出了几种方法来提高深度神经网络的可信度,但大多数都是针对特定类的对抗示例量身定制的,因此未能检测到其他角落案件或不安全的输入,这些输入大量偏离训练样本。本文介绍了基于覆盖范式的轻量级监控架构,以增强针对不同不安全输入的模型鲁棒性。特别是,在用于评估多种检测逻辑的架构中提出并测试了四种覆盖分析方法。实验结果表明,该方法有效地检测强大的对抗性示例和分销外输入,引入有限的执行时间和内存要求。
translated by 谷歌翻译
异常和异常值检测是机器学习中的长期问题。在某些情况下,异常检测容易,例如当从诸如高斯的良好特征的分布中抽出数据时。但是,当数据占据高维空间时,异常检测变得更加困难。我们呈现蛤蜊(聚类学习近似歧管),是任何度量空间中的歧管映射技术。 CLAM以快速分层聚类技术开始,然后根据使用多个几何和拓扑功能所选择的重叠群集,从群集树中引导图表。使用这些图形,我们实现了Chaoda(群集分层异常和异常值检测算法),探索了图形的各种属性及其组成集群以查找异常值。 Chaoda采用了一种基于培训数据集的转移学习形式,并将这些知识应用于不同基数,维度和域的单独测试集。在24个公开可用的数据集上,我们将Chaoda(按衡量ROC AUC)与各种最先进的无监督异常检测算法进行比较。六个数据集用于培训。 Chaoda优于16个剩余的18个数据集的其他方法。 CLAM和Chaoda规模大,高维“大数据”异常检测问题,并贯穿数据集和距离函数。克拉姆和Chaoda的源代码在github上自由地提供https://github.com/uri-abd/clam。
translated by 谷歌翻译
流媒体数据中对异常的实时检测正在受到越来越多的关注,因为它使我们能够提高警报,预测故障并检测到整个行业的入侵或威胁。然而,很少有人注意比较流媒体数据(即在线算法)的异常检测器的有效性和效率。在本文中,我们介绍了来自不同算法家族(即基于距离,密度,树木或投影)的主要在线检测器的定性合成概述,并突出了其构建,更新和测试检测模型的主要思想。然后,我们对在线检测算法的定量实验评估以及其离线对应物进行了彻底的分析。检测器的行为与不同数据集(即元功能)的特征相关,从而提供了对其性能的元级分析。我们的研究介绍了文献中几个缺失的见解,例如(a)检测器对随机分类器的可靠性以及什么数据集特性使它们随机执行; (b)在线探测器在何种程度上近似离线同行的性能; (c)哪种绘制检测器的策略和更新原始图最适合检测仅在数据集的功能子空间中可见的异常; (d)属于不同算法家族的探测器的有效性与效率之间的权衡是什么; (e)数据集的哪些特定特征产生在线算法以胜过所有其他特征。
translated by 谷歌翻译
我们介绍了几个新的数据集即想象的A / O和Imagenet-R以及合成环境和测试套件,我们称为CAOS。 Imagenet-A / O允许研究人员专注于想象成剩余的盲点。由于追踪稳健的表示,以特殊创建了ImageNet-R,因为表示不再简单地自然,而是包括艺术和其他演绎。 Caos Suite由Carla Simulator构建,允许包含异常物体,可以创建可重复的合成环境和用于测试稳健性的场景。所有数据集都是为测试鲁棒性和衡量鲁棒性的衡量进展而创建的。数据集已用于各种其他作品中,以衡量其具有鲁棒性的自身进步,并允许切向进展,这些进展不会完全关注自然准确性。鉴于这些数据集,我们创建了几种旨在推进鲁棒性研究的新方法。我们以最大Logit的形式和典型程度的形式构建简单的基线,并以深度的形式创建新的数据增强方法,从而提高上述基准。最大Logit考虑Logit值而不是SoftMax操作后的值,而微小的变化会产生明显的改进。典型程分将输出分布与类的后部分布进行比较。我们表明,除了分段任务之外,这将提高对基线的性能。猜测可能在像素级别,像素的语义信息比类级信息的语义信息不太有意义。最后,新的Deepaulment的新增强技术利用神经网络在彻底不同于先前使用的传统几何和相机的转换的图像上创建增强。
translated by 谷歌翻译
我们如何识别培训示例,这些培训示例为最多贡献的树集合的预测?在本文中,我们介绍了TREX,这是一个解释系统,它为树合奏提供了实例归因解释,例如随机林和渐变增强树。 TREX在以前为解释深神经网络开发的代表点框架构建。由于树合奏是非可差的,我们定义了一个捕获特定树集合的结构的内核。通过在内核逻辑回归或支持向量机中使用此内核,TREX构建一个近似于原始树集合的代理模型。代理模型的内核扩展中的权重用于定义每个训练示例的全局或本地重要性。我们的实验表明,TREX的代理模型准确地逼近树合奏;其全球重要性在数据集调试方面比以前的最先进的方式更有效;其解释识别比删除和培训评估框架下的替代方法更具影响力的样品;它比替代方法运行数量幅度;其本地解释可以识别和解释由于域不匹配导致的错误。
translated by 谷歌翻译
我们提出了TABPFN,这是一种与小型表格数据集上的最新技术竞争性的自动化方法,而更快的速度超过1,000美元。我们的方法非常简单:它完全符合单个神经网络的权重,而单个正向通行证直接产生了对新数据集的预测。我们的AutoML方法是使用基于变压器的先验数据拟合网络(PFN)体系结构进行元学习的,并近似贝叶斯推断,其先验是基于简单性和因果结构的假设。先验包含庞大的结构性因果模型和贝叶斯神经网络,其偏见是小体系结构,因此复杂性较低。此外,我们扩展了PFN方法以在实际数据上校准Prior的超参数。通过这样做,我们将抽象先前的假设与对真实数据的启发式校准分开。之后,修复了校准的超参数,并在按钮按钮时可以将TABPFN应用于任何新的表格数据集。最后,在OpenML-CC18套件的30个数据集上,我们表明我们的方法优于树木,并与复杂的最新Automl系统相同,并且在不到一秒钟内产生的预测。我们在补充材料中提供所有代码和最终训练的TABPFN。
translated by 谷歌翻译
决策树集合中汇总分类估计的一种常见方法是使用投票或平均每个类别的概率。后者考虑了不确定性估计值的可靠性(可以说,“不确定性的不确定性”)。更普遍的是,如何最好地结合来自多个来源的概率估计值,这是未知的。在本文中,我们研究了许多替代预测方法。我们的方法受到概率,信念功能和可靠分类的理论的启发,以及我们称证据积累的原则。我们对各种数据集的实验是基于随机决策树,该决策树保证了要组合的预测中的高度多样性。出乎意料的是,我们发现将平均值超过概率实际上很难击败。但是,证据积累在除小叶子以外的所有叶子上都表现出更好的结果。
translated by 谷歌翻译
在许多应用程序中,检测异常行为是新兴的需求,尤其是在安全性和可靠性是关键方面的情况下。尽管对异常的定义严格取决于域框架,但它通常是不切实际的或太耗时的,无法获得完全标记的数据集。使用无监督模型来克服缺乏标签的模型通常无法捕获特定的特定异常情况,因为它们依赖于异常值的一般定义。本文提出了一种新的基于积极学习的方法Alif,以通过减少所需标签的数量并将检测器调整为用户提供的异常的定义来解决此问题。在存在决策支持系统(DSS)的情况下,提出的方法特别有吸引力,这种情况在现实世界中越来越流行。尽管常见的DSS嵌入异常检测功能取决于无监督的模型,但它们没有办法提高性能:Alif能够通过在常见操作期间利用用户反馈来增强DSS的功能。 Alif是对流行的隔离森林的轻巧修改,在许多真实的异常检测数据集中,相对于其他最先进的算法证明了相对于其他最先进算法的出色性能。
translated by 谷歌翻译
决策森林(森林),尤其是随机森林和梯度促进树木,与许多监督学习场景中的其他方法相比,已经证明了最先进的准确性。尤其是,森林在表格数据中占主导地位,即当特征空间非结构化时,因此信号是特征指数置换的不变性。然而,在存在于多种多样(例如图像,文本和语音)深网(网络)(特别是卷积深网(Convnets))上的结构化数据中,倾向于优于森林。我们猜想至少部分原因是网络的输入不仅仅是特征幅度,也是其索引。相反,天真的森林实施未能明确考虑特征指数。最近提出的森林方法表明,对于每个节点,森林从某些特定分布中隐式采样一个随机矩阵。这些森林像某些类别的网络一样,通过将特征空间划分为对应于线性函数的凸多物体来学习。我们以这种方法为基础,并表明人们可以以多种感知方式选择分布来纳入特征区域。我们在数据上活在三个不同的流形上的数据上证明了经验性能:圆环,图像和时间序列。此外,我们证明了其在多元模拟环境中的强度,并且在预测癫痫患者的手术结果方面也表现出了优越性,并从非运动脑区域的原始立体定向EEG数据中预测运动方向。在所有模拟和真实数据中,歧管随机森林(MORF)算法的表现优于忽略特征空间结构并挑战Convnets的性能。此外,MORF运行迅速,并保持解释性和理论上的理由。
translated by 谷歌翻译
缺乏精心校准的置信度估计值使神经网络在安全至关重要的领域(例如自动驾驶或医疗保健)中不足。在这些设置中,有能力放弃对分布(OOD)数据进行预测的能力,就像正确分类分布数据一样重要。我们介绍了$ P $ -DKNN,这是一种新颖的推理程序,该过程采用了经过训练的深神经网络,并分析了其中间隐藏表示形式的相似性结构,以计算与端到端模型预测相关的$ p $值。直觉是,在潜在表示方面执行的统计测试不仅可以用作分类器,还可以提供统计上有充分根据的不确定性估计。 $ P $ -DKNN是可扩展的,并利用隐藏层学到的表示形式的组成,这使深度表示学习成功。我们的理论分析基于Neyman-Pearson的分类,并将其与选择性分类的最新进展(拒绝选项)联系起来。我们证明了在放弃预测OOD输入和保持分布输入的高精度之间的有利权衡。我们发现,$ p $ -DKNN强迫自适应攻击者制作对抗性示例(一种最差的OOD输入形式),以对输入引入语义上有意义的更改。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译