节点注入对图神经网络(GNN)的攻击已作为一种实际的攻击场景而引起了人们的注意,攻击者会注入恶意节点,而不是修改节点功能或边缘以降低GNN的性能。尽管节点注射攻击最初取得了成功,但我们发现,通过防御方法,可以通过防御方法和限制其在实践中限制其攻击性能,从而很容易将注射的节点与原始正常节点区分开。为了解决上述问题,我们致力于伪装节点注入攻击,即伪装注入恶意节点(结构/属性)是对防御方法似乎合理/不察觉的普通淋巴结。图形数据的非欧亚人性质和缺乏人类的先验性质给伪装上伪装的形式化,实施和评估带来了巨大挑战。在本文中,我们首先提出并制定了从注射节点围绕的自我网络的忠诚度和多样性中注入的节点的伪装。然后,我们为节点注射攻击(即Cana)设计了一个对抗性伪装框架,以改善伪装,同时确保攻击性能。进一步设计了几种用于图形伪装的新型指标,以进行全面的评估。实验结果表明,当将现有的节点注入攻击方法与我们提出的CANA框架配置时,针对防御方法的攻击性能以及节点伪装将显着改善。
translated by 谷歌翻译
图形神经网络(GNNS)在各种现实世界应用中取得了有希望的性能。然而,最近的研究表明,GNN易受对抗性发作的影响。在本文中,我们研究了关于图表 - 图 - 图注射攻击(GIA)的最近引入的现实攻击情景。在GIA场景中,对手无法修改输入图的现有链路结构和节点属性,而是通过将逆势节点注入到它中来执行攻击。我们对GIA环境下GNN的拓扑脆弱性分析,基于该拓扑结构,我们提出了用于有效注射攻击的拓扑缺陷图注射攻击(TDGIA)。 TDGIA首先介绍了拓扑有缺陷的边缘选择策略,可以选择与注入的原始节点连接。然后,它设计平滑功能优化目标,以生成注入节点的功能。大规模数据集的广泛实验表明,TDGIA可以一致而明显优于攻击数十个防御GNN模型中的各种攻击基线。值得注意的是,来自TDGIA的目标GNNS上的性能下降比KDD-CUP 2020上的数百个提交所带来的最佳攻击解决方案所带来的损坏多于两倍。
translated by 谷歌翻译
对图形的对抗攻击对图形机器学习(GML)模型的鲁棒性构成了重大威胁。当然,攻击者和捍卫者之间存在一场易于升级的军备竞赛。但是,在相同和现实的条件下,双方背后的策略往往不相当。为了弥合这一差距,我们展示了Graph稳健性基准(GRB),其目的是为GML模型的对抗鲁棒性提供可扩展,统一,模块化和可重复的评估。 GRB将攻击和防御过程标准化1)开发可扩展和多样化的数据集,2)模块化攻击和防御实现,以及统一精细方案中的评估协议。通过利用GRB管道,最终用户可以专注于具有自动数据处理和实验评估的强大GML模型的开发。为了支持对图形对抗性学习的开放和可重复研究,GRB还遍布不同方案的公共排行榜。作为起点,我们对基准基线技术进行了广泛的实验。 GRB是开放的,欢迎社区的贡献。数据集,代码,排行榜可在https://cogdl.ai/grb/home获得。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.
translated by 谷歌翻译
图表神经网络(GNNS)已成功利用在许多现实世界应用中的图形分析任务中。攻击和防御方法之间的竞争也增强了GNN的鲁棒性。在这次竞争中,对抗性培训方法的发展提出了对攻击例子的多样性要求。相比之下,大多数具有特定攻击策略的攻击方法难以满足这种要求。为了解决这个问题,我们提出了GraphAtcher,这是一种新型通用图形攻击框架,可根据图分析任务灵活地调整结构和攻击策略。通过在三个关键组件上的替代培训:基于生成对冲网络(GaN)的多策略攻击发生器(MAG),相似性鉴别器(SD)和攻击鉴别器(AD),产生对手示例。此外,考虑到节点相似性分布的变化,我们介绍了一种新颖的相似性修改率SMR来进行隐秘的攻击。在各种基准数据集上的实验表明,GraphAtcker可以在节点分类,图形分类和链路预测的图形分析任务上实现最先进的攻击性能,无论是否进行了对抗性培训。此外,我们还分析了每个任务的独特特征及其在统一攻击框架中的特定响应。项目代码可在https://github.com/honoluluuuu/graphatter处获得。
translated by 谷歌翻译
图形卷积网络(GCN)已显示出容易受到小型对抗扰动的影响,这成为严重的威胁,并在很大程度上限制了其在关键安全场景中的应用。为了减轻这种威胁,大量的研究工作已致力于增加GCN对对抗攻击的鲁棒性。但是,当前的防御方法通常是为整个图表而设计的,并考虑了全球性能,在保护重要的本地节点免受更强的对抗性靶向攻击方面面临着挑战。在这项工作中,我们提出了一种简单而有效的方法,名为Graph Universal对抗防御(Guard)。与以前的作品不同,Guard可以保护每个单独的节点免受通用防御贴片的攻击,该节点是一次生成的,可以应用于图中的任何节点(节点-Agnostic)。在四个基准数据集上进行的广泛实验表明,我们的方法可显着提高几种已建立的GCN的鲁棒性,以针对多种对抗性攻击,并且胜过大幅度的最先进的防御方法。我们的代码可在https://github.com/edisonleeeeee/guard上公开获取。
translated by 谷歌翻译
从消息传递机制中受益,图形神经网络(GNN)在图形数据上的繁荣任务上已经成功。但是,最近的研究表明,攻击者可以通过恶意修改图形结构来灾难性地降低GNN的性能。解决此问题的直接解决方案是通过在两个末端节点的成对表示之间学习度量函数来建模边缘权重,该指标函数试图将低权重分配给对抗边缘。现有方法使用监督GNN学到的原始功能或表示形式来对边缘重量进行建模。但是,两种策略都面临着一些直接问题:原始特征不能代表节点的各种特性(例如结构信息),而受监督的GNN学到的表示可能会遭受分类器在中毒图上的差异性能。我们需要携带特征信息和尽可能糊状的结构信息并且对结构扰动不敏感的表示形式。为此,我们提出了一条名为stable的无监督管道,以优化图形结构。最后,我们将精心设计的图输入到下游分类器中。对于这一部分,我们设计了一个高级GCN,可显着增强香草GCN的鲁棒性,而不会增加时间复杂性。在四个现实世界图基准上进行的广泛实验表明,稳定的表现优于最先进的方法,并成功防御各种攻击。
translated by 谷歌翻译
图形神经网络(GNNS)在许多图形挖掘任务中取得了巨大的成功,这些任务从消息传递策略中受益,该策略融合了局部结构和节点特征,从而为更好的图表表示学习。尽管GNN成功,并且与其他类型的深神经网络相似,但发现GNN容易受到图形结构和节点特征的不明显扰动。已经提出了许多对抗性攻击,以披露在不同的扰动策略下创建对抗性例子的GNN的脆弱性。但是,GNNS对成功后门攻击的脆弱性直到最近才显示。在本文中,我们披露了陷阱攻击,这是可转移的图形后门攻击。核心攻击原则是用基于扰动的触发器毒化训练数据集,这可以导致有效且可转移的后门攻击。图形的扰动触发是通过通过替代模型的基于梯度的得分矩阵在图形结构上执行扰动动作来生成的。与先前的作品相比,陷阱攻击在几种方面有所不同:i)利用替代图卷积网络(GCN)模型来生成基于黑盒的后门攻击的扰动触发器; ii)它产生了没有固定模式的样品特异性扰动触发器; iii)在使用锻造中毒训练数据集训练时,在GNN的背景下,攻击转移到了不同​​的GNN模型中。通过对四个现实世界数据集进行广泛的评估,我们证明了陷阱攻击使用四个现实世界数据集在四个不同流行的GNN中构建可转移的后门的有效性
translated by 谷歌翻译
最近的研究证明,图形神经网络容易受到对抗性攻击的影响。攻击者可以仅依靠培训标签来破坏Edge扰动不可知论受害者模型的性能。研究人员观察到,基于显着性的攻击者倾向于添加边缘而不是删除它们,这是通过以下事实来解释的:添加边缘通过聚集来污染节点的特征,同时删除边缘只会导致一些信息丢失。在本文中,我们进一步证明了攻击者通过添加类间边缘来扰动图,这也表现为降低扰动图的同层。从这个角度来看,基于显着的攻击者仍然有提高能力和不可识别的空间。基于GNN的替代模型的消息传递导致通过类间边缘连接的节点的过度厚度,从而阻止了攻击者获得节点特征的独特性。为了解决此问题,我们引入了一个多跳的汇总消息传递,以保留节点之间的属性差异。此外,我们提出了一个正规化术语来限制同质方差,以增强攻击不可识别。实验验证我们提出的替代模型改善了攻击者的多功能性,正则化项有助于限制扰动图的同质性。
translated by 谷歌翻译
图神经网络(GNN)在图形分类和多样化的下游现实世界应用方面取得了巨大成功。尽管他们成功了,但现有的方法要么仅限于结构攻击,要么仅限于本地信息。这要求在图形分类上建立更一般的攻击框架,由于使用全球图表级信息生成本地节点级的对抗示例的复杂性,因此面临重大挑战。为了解决这个“全局到本地”问题,我们提出了一个通用框架CAMA,以通过层次样式操纵图形结构和节点特征来生成对抗性示例。具体而言,我们利用Graph类激活映射及其变体来产​​生与图形分类任务相对应的节点级的重要性。然后,通过算法的启发式设计,我们可以借助节点级别和子图级的重要性在不明显的扰动预算下执行功能和结构攻击。在六个现实世界基准上攻击四个最先进的图形分类模型的实验验证了我们框架的灵活性和有效性。
translated by 谷歌翻译
链接预测,推断图形的未发现或潜在链接,被广泛应用于现实世界中。通过促进图表的标记链接作为训练数据,已经研究了许多基于深度学习的链接预测方法,与非深度方法相比,它们具有主导的预测准确性。但是,恶意制作的训练图的威胁将在深层模型中留下特定的后门,因此,当一些特定的示例被馈入模型时,它将做出错误的预测,定义为后门攻击。这是当前文献中忽略的重要方面。在本文中,我们促使后门攻击对链接预测的概念,并提出链接 - 背门以揭示现有链接预测方法的训练漏洞。具体而言,链接 - 贝克门将假节点与目标链接的节点结合在一起,形成触发器。此外,它通过目标模型的梯度信息来优化触发器。因此,在后排数据集中训练的链接预测模型将预测与目标状态触发的链接。在五个基准数据集和五个表现良好的链接预测模型上进行的广泛实验表明,链接 - 贝克门都在白色框(即目标模型参数可用)和黑色框下实现了最新的攻击成功率。框(即目标模型参数不可用)方案。此外,我们在防御性情况下作证了攻击,结果表明,链接 - 背部门仍然可以成功构建对表现良好的链接预测方法的成功攻击。代码和数据可在https://github.com/seaocn/link-backdoor上获得。
translated by 谷歌翻译
基于图的异常检测(GAD)由于图表的强大表示能力以及图形采矿技术的最新进展而变得普遍。然而,这些GAD工具暴露了新的攻击表面,讽刺地是由于能够利用数据之间的关系的独特优势。也就是说,攻击者现在可以操纵那些关系(即图形的结构),以允许一些目标节点逃避检测。在本文中,我们通过将新型的针对性结构中毒攻击设计到奇怪的基于代表回归的GAD系统来利用这种脆弱性。特别是,我们为奇怪的攻击制定了奇怪的攻击,作为双级优化问题,在那里关键的技术挑战是有效地解决离散域中的问题。我们提出了一种基于梯度下降的新型攻击方法称为二进制层。与现有技术相比,BinarizedAttack可以更好地使用梯度信息,使其特别适用于解决组合优化问题。此外,我们通过采用它来攻击其他基于代表学习的GAD系统来调查BinarizedAtch的攻击可转换性。我们的综合实验表明,BinarizedAttack非常有效地使目标节点能够避免基于图形的异常检测工具与有限的攻击者的预算,并且在黑箱转移攻击设置中,BinarizedAtck也有效地测试,特别是可以显着改变GAD系统学习的节点嵌入式。因此,我们的研究开辟了学习新型攻击的门,以依靠图形数据的安全分析工具。
translated by 谷歌翻译
图形注意力网络(GAT)是处理图数据的有用深度学习模型。但是,最近的作品表明,经典的GAT容易受到对抗攻击的影响。它在轻微的扰动下急剧降低。因此,如何增强GAT的鲁棒性是一个关键问题。本文提出了强大的GAT(Rogat),以根据注意机制的修订来改善GAT的鲁棒性。与原始的GAT不同,该GAT使用注意力机制的不同边缘,但仍然对扰动敏感,Rogat逐渐增加了动态注意力评分并提高了稳健性。首先,Rogat根据平滑度假设修改边缘的重量,这对于普通图很常见。其次,Rogat进一步修改了功能以抑制功能的噪声。然后,由动态边缘的重量产生额外的注意力评分,可用于减少对抗性攻击的影响。针对引文数据的引文数据的针对目标和不靶向攻击的不同实验表明,Rogat的表现优于最近的大多数防御方法。
translated by 谷歌翻译
Graph Neural Networks (GNNs) as deep learning models working on graph-structure data have achieved advanced performance in many works. However, it has been proved repeatedly that, not all edges in a graph are necessary for the training of machine learning models. In other words, some of the connections between nodes may bring redundant or even misleading information to downstream tasks. In this paper, we try to provide a method to drop edges in order to purify the graph data from a new perspective. Specifically, it is a framework to purify graphs with the least loss of information, under which the core problems are how to better evaluate the edges and how to delete the relatively redundant edges with the least loss of information. To address the above two problems, we propose several measurements for the evaluation and different judges and filters for the edge deletion. We also introduce a residual-iteration strategy and a surrogate model for measurements requiring unknown information. The experimental results show that our proposed measurements for KL divergence with constraints to maintain the connectivity of the graph and delete edges in an iterative way can find out the most edges while keeping the performance of GNNs. What's more, further experiments show that this method also achieves the best defense performance against adversarial attacks.
translated by 谷歌翻译
尽管深度神经网络在图形分析方面取得了巨大的成功,但最近的工作表明它们容易受到对抗攻击的影响。与对图像分类的对抗性攻击相比,在图形上执行对抗性攻击更具挑战性,因为图形的相邻矩阵的离散性和非差异性质。在这项工作中,我们提出了集群攻击 - 对节点分类的图形注射攻击(GIA),该攻击将假节点注入原始图中,以使某些受害者节点的图形神经网络(GNN)的性能退化,同时将其他节点视为其他节点几乎没有。我们证明,GIA问题可以等效地作为图形聚类问题。因此,可以在图形聚类的上下文中解决邻接矩阵的离散优化问题。特别是,我们建议通过对受害者漏洞度量来衡量受害者节点之间的相似性,这与受害者节点将如何受到注入的假节点的影响有关,并相应地将受害者节点群集成。我们的攻击是以实用且不明显的基于查询的黑盒方式进行的,图表上只有几个节点可以访问。理论分析和广泛的实验通过仅使用少量查询来欺骗节点分类器,证明了我们方法的有效性。
translated by 谷歌翻译
图神经网络(GNN)正在在各种应用领域中实现出色的性能。但是,GNN容易受到输入数据中的噪声和对抗性攻击。在噪音和对抗性攻击方面使GNN坚固是一个重要的问题。现有的GNN防御方法在计算上是要求的,并且不可扩展。在本文中,我们提出了一个通用框架,用于鲁棒化的GNN称为加权laplacian GNN(RWL-GNN)。该方法将加权图拉普拉斯学习与GNN实现结合在一起。所提出的方法受益于Laplacian矩阵的积极半定义特性,具有光滑度和潜在特征,通过制定统一的优化框架,从而确保丢弃对抗性/嘈杂的边缘,并适当加权图中的相关连接。为了进行演示,实验是通过图形卷积神经网络(GCNN)体系结构进行的,但是,所提出的框架很容易适合任何现有的GNN体系结构。使用基准数据集的仿真结果建立了所提出方法的疗效,无论是准确性还是计算效率。可以在https://github.com/bharat-runwal/rwl-gnn上访问代码。
translated by 谷歌翻译
我们为旨在降低公平性的对抗神经网络(GNN)的对抗性攻击(GNN)的存在和有效性提供了证据。这些攻击可能不利基于GNN的节点分类中的特定节点子组,其中基础网络的节点具有敏感的属性,例如种族或性别。我们进行了定性和实验分析,以解释对抗链接注射如何损害GNN预测的公平性。例如,攻击者可以通过在属于相反子组和相反类标签的节点之间注入对抗性链接来损害基于GNN的节点分类的公平性。我们在经验数据集上的实验表明,对抗公平性攻击可以显着降低GNN预测的公平性(攻击是有效的),其扰动率较低(攻击是有效的),并且没有明显的准确性下降(攻击是欺骗性的)。这项工作证明了GNN模型对对抗公平性攻击的脆弱性。我们希望我们的发现在社区中提高人们对这个问题的认识,并为GNN模型的未来发展奠定了基础,这些模型对这种攻击更为强大。
translated by 谷歌翻译
许多数据挖掘任务依靠图来模拟个人(节点)之间的关系结构。由于关系数据通常很敏感,因此迫切需要评估图形数据中的隐私风险。对数据分析模型的著名隐私攻击是模型反转攻击,该攻击旨在推断培训数据集中的敏感数据并引起极大的隐私问题。尽管它在类似网格的域中取得了成功,但直接应用模型反转攻击(例如图形)导致攻击性能差。这主要是由于未能考虑图的唯一属性。为了弥合这一差距,我们对模型反转攻击对图神经网络(GNNS)进行了系统研究,这是本文中最新的图形分析工具之一。首先,在攻击者可以完全访问目标GNN模型的白色框设置中,我们提出GraphMi来推断私人训练图数据。具体而言,在GraphMi中,提出了一个投影梯度模块来应对图边的离散性并保持图形特征的稀疏性和平滑度。图形自动编码器模块用于有效利用边缘推理的图形拓扑,节点属性和目标模型参数。随机采样模块最终可以采样离散边缘。此外,在攻击者只能查询GNN API并接收分类结果的硬标签黑框设置中,我们根据梯度估计和增强学习(RL-GraphMI)提出了两种方法。我们的实验结果表明,此类防御措施没有足够的有效性,并要求对隐私攻击进行更先进的防御能力。
translated by 谷歌翻译
基于深度神经网络(DNN)的智能信息(IOT)系统已被广泛部署在现实世界中。然而,发现DNNS易受对抗性示例的影响,这提高了人们对智能物联网系统的可靠性和安全性的担忧。测试和评估IOT系统的稳健性成为必要和必要。最近已经提出了各种攻击和策略,但效率问题仍未纠正。现有方法是计算地广泛或耗时,这在实践中不适用。在本文中,我们提出了一种称为攻击启发GaN(AI-GaN)的新框架,在有条件地产生对抗性实例。曾经接受过培训,可以有效地给予对抗扰动的输入图像和目标类。我们在白盒设置的不同数据集中应用AI-GaN,黑匣子设置和由最先进的防御保护的目标模型。通过广泛的实验,AI-GaN实现了高攻击成功率,优于现有方法,并显着降低了生成时间。此外,首次,AI-GaN成功地缩放到复杂的数据集。 Cifar-100和Imagenet,所有课程中的成功率约为90美元。
translated by 谷歌翻译
机器学习模型被证明是面对模型提取攻击的严重威胁,其中服务提供商拥有的训练有素的私人模型可以被假装作为客户端的攻击者窃取。不幸的是,先前的作品侧重于欧几里德空间训练的模型,例如图像和文本,而如何提取包含图形结构的GNN模型,则尚未探索节点功能。本文首次全面调查并开发针对GNN模型的模型提取攻击。我们首先通过考虑由攻击者获得的节点的不同背景知识,将对冲威胁分类为七种类别的威胁建模并将对抗性威胁分类为七个类别。然后我们展示了利用每种威胁中的可访问知识来实现​​攻击的详细方法。通过评估三个现实世界数据集,我们的攻击显示有效提取重复模型,即目标域中的84% - 89%的输入具有与受害者模型相同的输出预测。
translated by 谷歌翻译