We address the problem of estimating a high quality dense depth map from a single RGB input image. We start out with a baseline encoder-decoder convolutional neural network architecture and pose the question of how the global processing of information can help improve overall depth estimation. To this end, we propose a transformerbased architecture block that divides the depth range into bins whose center value is estimated adaptively per image. The final depth values are estimated as linear combinations of the bin centers. We call our new building block AdaBins. Our results show a decisive improvement over the state-ofthe-art on several popular depth datasets across all metrics. We also validate the effectiveness of the proposed block with an ablation study and provide the code and corresponding pre-trained weights of the new state-of-the-art model 1 .
translated by 谷歌翻译
基于注意力的模型(例如变压器)在密集的预测任务(例如语义分割)上表现出出色的性能,因为它们可以捕获图像中的长期依赖性。但是,到目前为止,很少探索变压器对单眼深度预测的好处。本文基于室内NYUV2数据集和室外KITTI数据集的深度估计任务的各种基于变压器的模型。我们提出了一种新型的基于注意力的架构,即单眼深度估计的深度构建器,该估计使用多头自我注意力来生成多尺度特征图,这些图由我们提出的解码器网络有效地组合。我们还提出了一个跨键模块,该模块将深度范围划分为每个图像可自适应估计的中心值的垃圾箱。估计的最终深度是每个像素的垃圾箱中心的线性组合。 TransBins模块在编码阶段使用变压器模块利用全局接收场。 NYUV2和KITTI深度估计基准的实验结果表明,我们提出的方法将最新方法提高了3.3%,在根平方误差(RMSE)方面分别将最新方法提高了3.3%。
translated by 谷歌翻译
建立新型观点综合的最近进展后,我们提出了改善单眼深度估计的应用。特别是,我们提出了一种在三个主要步骤中分开的新颖训练方法。首先,单眼深度网络的预测结果被扭转到额外的视点。其次,我们应用一个额外的图像综合网络,其纠正并提高了翘曲的RGB图像的质量。通过最小化像素-WISE RGB重建误差,该网络的输出需要尽可能类似地查看地面真实性视图。第三,我们将相同的单眼深度估计重新应用于合成的第二视图点,并确保深度预测与相关的地面真理深度一致。实验结果证明,我们的方法在Kitti和Nyu-Deaft-V2数据集上实现了最先进的或可比性,具有轻量级和简单的香草U-Net架构。
translated by 谷歌翻译
在本文中,我们的目标是在各种照明条件下解决复杂场景中一致的深度预测问题。现有的基于RGB-D传感器或虚拟渲染的室内数据集具有两个关键限制 - 稀疏深度映射(NYU深度V2)和非现实照明(Sun CG,SceneNet RGB-D)。我们建议使用Internet 3D室内场景并手动调整其照明,以呈现照片逼真的RGB照片及其相应的深度和BRDF地图,获取名为Vari DataSet的新室内深度数据集。通过在编码特征上应用深度可分离扩张的卷积来处理全局信息并减少参数,提出了一个名为DCA的简单卷积块。我们对这些扩张的特征进行横向关注,以保留不同照明下深度预测的一致性。通过将其与Vari数据集上的当前最先进的方法进行比较来评估我们的方法,并且在我们的实验中观察到显着改善。我们还开展了融合研究,Finetune我们的NYU深度V2模型,并评估了真实数据,以进一步验证我们的DCA块的有效性。代码,预先训练的权重和vari数据集是开放的。
translated by 谷歌翻译
我们提出了一种新型算法,用于单眼深度估计,将度量深度图分解为归一化的深度图和尺度特征。所提出的网络由共享编码器和三个解码器组成,称为G-NET,N-NET和M-NET,它们分别估算了梯度图,归一化的深度图和度量深度图。M-NET学习使用G-NET和N-NET提取的相对深度特征更准确地估算度量深度。所提出的算法具有一个优点,即它可以使用无度量深度标签的数据集来提高度量深度估计的性能。各种数据集的实验结果表明,所提出的算法不仅为最先进的算法提供竞争性能,而且即使只有少量的度量深度数据可用于培训,也会产生可接受的结果。
translated by 谷歌翻译
While monocular depth estimation (MDE) is an important problem in computer vision, it is difficult due to the ambiguity that results from the compression of a 3D scene into only 2 dimensions. It is common practice in the field to treat it as simple image-to-image translation, without consideration for the semantics of the scene and the objects within it. In contrast, humans and animals have been shown to use higher-level information to solve MDE: prior knowledge of the nature of the objects in the scene, their positions and likely configurations relative to one another, and their apparent sizes have all been shown to help resolve this ambiguity. In this paper, we present a novel method to enhance MDE performance by encouraging use of known-useful information about the semantics of objects and inter-object relationships within a scene. Our novel ObjCAViT module sources world-knowledge from language models and learns inter-object relationships in the context of the MDE problem using transformer attention, incorporating apparent size information. Our method produces highly accurate depth maps, and we obtain competitive results on the NYUv2 and KITTI datasets. Our ablation experiments show that the use of language and cross-attention within the ObjCAViT module increases performance. Code is released at https://github.com/DylanAuty/ObjCAViT.
translated by 谷歌翻译
深度估计在计算机视觉社区中越来越受欢迎,并且仍然很难仅使用一个单个RGB图像恢复精确的深度图。在这项工作中,我们观察了现有方法倾向于表现出不对称误差的现象,这可能会为准确和坚固的深度估计开辟一个新的方向。我们仔细调查了该现象,并构建了一个两级合奏计划Nenet,将多种预测的多种预测集成到不同的基础预测。 NENET形成更可靠的深度估计器,这大大提升了基础预测器的性能。值得注意的是,这是第一次尝试引入集成学习,并评估其符合我们知识中的单眼深度估计的效用。广泛的实验表明,拟议的NENET比NYU-Deaft-V2和Kitti数据集上以前的最先进方法实现了更好的结果。特别是,我们的方法将先前最先进的方法从0.365到0.349上的NYU数据集上的公制RMSE提高到0.349。为了验证相机的概括性,我们直接将培训的型号应用于NYU数据集的模型到Sun RGB-D数据集,而无需任何微调,并且实现了卓越的结果,这表明其具有强大的普遍性。源代码和培训的型号将公开接受。
translated by 谷歌翻译
Monocular depth estimation, which plays a crucial role in understanding 3D scene geometry, is an ill-posed problem. Recent methods have gained significant improvement by exploring image-level information and hierarchical features from deep convolutional neural networks (DC-NNs). These methods model depth estimation as a regression problem and train the regression networks by minimizing mean squared error, which suffers from slow convergence and unsatisfactory local solutions. Besides, existing depth estimation networks employ repeated spatial pooling operations, resulting in undesirable low-resolution feature maps. To obtain high-resolution depth maps, skipconnections or multi-layer deconvolution networks are required, which complicates network training and consumes much more computations. To eliminate or at least largely reduce these problems, we introduce a spacing-increasing discretization (SID) strategy to discretize depth and recast depth network learning as an ordinal regression problem. By training the network using an ordinary regression loss, our method achieves much higher accuracy and faster convergence in synch. Furthermore, we adopt a multi-scale network structure which avoids unnecessary spatial pooling and captures multi-scale information in parallel.The method described in this paper achieves state-ofthe-art results on four challenging benchmarks, i.e., KITTI [18], ScanNet [10], Make3D [51], and NYU Depth v2 [43], and win the 1st prize in Robust Vision Challenge 2018. Code has been made available at: https://github. com/hufu6371/DORN .
translated by 谷歌翻译
跳过连接是编码器网络中的基本单元,能够改善神经网络的特征宣传。但是,大多数带有跳过连接的方法仅连接了编码器和解码器中相同分辨率的连接功能,这忽略了编码器中的信息损失,而图层的进度更深。为了利用编码器较浅层中特征的信息损失,我们提出了一个完整的跳过连接网络(FSCN),以实现单眼深度估计任务。此外,要更接近跳过连接中的功能,我们提出了一个自适应串联模块(ACM)。此外,我们对FSCN和FSCN的室内和室内数据集(即Kitti Dataste和NYU DEPTH DATASET)进行了广泛的实验。
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
近年来,尤其是在户外环境中,自我监督的单眼深度估计已取得了重大进展。但是,在大多数现有数据被手持设备捕获的室内场景中,深度预测结果无法满足。与室外环境相比,使用自我监督的方法估算室内环境的单眼视频深度,导致了两个额外的挑战:(i)室内视频序列的深度范围在不同的框架上有很大变化,使深度很难进行。网络以促进培训的一致深度线索; (ii)用手持设备记录的室内序列通常包含更多的旋转运动,这使姿势网络难以预测准确的相对摄像头姿势。在这项工作中,我们通过对这些挑战进行特殊考虑并巩固了一系列良好实践,以提高自我监督的单眼深度估计室内环境的表现,从而提出了一种新颖的框架单声道++。首先,提出了具有基于变压器的比例回归网络的深度分解模块,以明确估算全局深度尺度因子,预测的比例因子可以指示最大深度值。其次,我们不像以前的方法那样使用单阶段的姿势估计策略,而是建议利用残留姿势估计模块来估计相对摄像机在连续迭代的跨帧中构成。第三,为了为我们的残留姿势估计模块纳入广泛的坐标指南,我们建议直接在输入上执行坐标卷积编码,以实现姿势网络。提出的方法在各种基准室内数据集(即Euroc Mav,Nyuv2,扫描仪和7片)上进行了验证,证明了最先进的性能。
translated by 谷歌翻译
深度是自治车辆以感知障碍的重要信息。由于价格相对较低,单目一体相机的小尺寸,从单个RGB图像的深度估计引起了对研究界的兴趣。近年来,深神经网络(DNN)的应用已经显着提高了单眼深度估计(MDE)的准确性。最先进的方法通常设计在复杂和极其深的网络架构之上,需要更多的计算资源,而不使用高端GPU实时运行。虽然一些研究人员试图加速运行速度,但深度估计的准确性降低,因为压缩模型不代表图像。另外,现有方法使用的特征提取器的固有特性导致产生的特征图中的严重空间信息丢失,这也损害了小型图像的深度估计的精度。在本研究中,我们有动力设计一种新颖且有效的卷积神经网络(CNN),其连续地组装两个浅编码器解码器样式子网,以解决这些问题。特别是,我们强调MDE准确性和速度之间的权衡。已经在NYU深度V2,Kitti,Make3D和虚幻数据集上进行了广泛的实验。与拥有极其深层和复杂的架构的最先进的方法相比,所提出的网络不仅可以实现可比性的性能,而且在单个不那么强大的GPU上以更快的速度运行。
translated by 谷歌翻译
This paper addresses the problem of estimating the depth map of a scene given a single RGB image. We propose a fully convolutional architecture, encompassing residual learning, to model the ambiguous mapping between monocular images and depth maps. In order to improve the output resolution, we present a novel way to efficiently learn feature map up-sampling within the network. For optimization, we introduce the reverse Huber loss that is particularly suited for the task at hand and driven by the value distributions commonly present in depth maps. Our model is composed of a single architecture that is trained end-to-end and does not rely on post-processing techniques, such as CRFs or other additional refinement steps. As a result, it runs in real-time on images or videos. In the evaluation, we show that the proposed model contains fewer parameters and requires fewer training data than the current state of the art, while outperforming all approaches on depth estimation. Code and models are publicly available 5 .
translated by 谷歌翻译
自我监督的单眼深度估计是一种有吸引力的解决方案,不需要难以供应的深度标签进行训练。卷积神经网络(CNN)最近在这项任务中取得了巨大成功。但是,他们的受欢迎的领域有限地限制了现有的网络体系结构,以便在本地进行推理,从而抑制了自我监督范式的有效性。鉴于Vision Transformers(VIT)最近取得的成功,我们提出了Monovit,这是一个崭新的框架,结合了VIT模型支持的全球推理以及自我监督的单眼深度估计的灵活性。通过将普通的卷积与变压器块相结合,我们的模型可以在本地和全球范围内推理,从而在较高的细节和准确性上产生深度预测,从而使MonoVit可以在已建立的Kitti数据集中实现最先进的性能。此外,Monovit证明了其在其他数据集(例如Make3D和Drivingstereo)上的出色概括能力。
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译
Monocular depth prediction plays a crucial role in understanding 3D scene geometry. Although recent methods have achieved impressive progress in evaluation metrics such as the pixel-wise relative error, most methods neglect the geometric constraints in the 3D space. In this work, we show the importance of the high-order 3D geometric constraints for depth prediction. By designing a loss term that enforces one simple type of geometric constraints, namely, virtual normal directions determined by randomly sampled three points in the reconstructed 3D space, we can considerably improve the depth prediction accuracy. Significantly, the byproduct of this predicted depth being sufficiently accurate is that we are now able to recover good 3D structures of the scene such as the point cloud and surface normal directly from the depth, eliminating the necessity of training new sub-models as was previously done. Experiments on two benchmarks: NYU Depth-V2 and KITTI demonstrate the effectiveness of our method and state-of-the-art performance.
translated by 谷歌翻译
在本文中,我们提出了一种快速的单眼深度估计方法,用于启用低成本水下机器人的3D感知能力。我们制定了一种名为udepth的新型端到端深度视觉学习管道,该管道结合了自然水下场景的图像形成特征的领域知识。首先,我们通过利用水下光线衰减来调整新的输入空间,然后在粗像素深度预测中设计最小二乘配方。随后,我们将其扩展到一个域投影损失,该损失指导超过9K RGB-D训练样本的Udepth的端到端学习。 Udepth采用计算轻型MobilenETV2骨架和基于变压器的优化器设计,以确保嵌入式系统上的快速推理速率。通过域感知的设计选择并通过全面的实验分析,我们证明了可以在确保较小的计算足迹的同时实现最新的深度估计性能。具体而言,与现有基准相比,网络参数少70%-80%,Udepth实现了可比性的,并且通常更高的深度估计性能。虽然完整的模型在单个GPU(CPU核心)上提供了超过66 fps(13 fps)的推理率,但我们对粗深度预测的域投影在单板NVIDIA JETSON TX2S上以51.5 fps的速率运行。推理管道可在https://github.com/uf-robopi/udepth上找到。
translated by 谷歌翻译
Although cameras are ubiquitous, robotic platforms typically rely on active sensors like LiDAR for direct 3D perception. In this work, we propose a novel self-supervised monocular depth estimation method combining geometry with a new deep network, PackNet, learned only from unlabeled monocular videos. Our architecture leverages novel symmetrical packing and unpacking blocks to jointly learn to compress and decompress detail-preserving representations using 3D convolutions. Although self-supervised, our method outperforms other self, semi, and fully supervised methods on the KITTI benchmark. The 3D inductive bias in PackNet enables it to scale with input resolution and number of parameters without overfitting, generalizing better on out-of-domain data such as the NuScenes dataset. Furthermore, it does not require large-scale supervised pretraining on ImageNet and can run in real-time. Finally, we release DDAD (Dense Depth for Automated Driving), a new urban driving dataset with more challenging and accurate depth evaluation, thanks to longer-range and denser ground-truth depth generated from high-density LiDARs mounted on a fleet of self-driving cars operating world-wide. †
translated by 谷歌翻译
在接受高质量的地面真相(如LiDAR数据)培训时,监督的学习深度估计方法可以实现良好的性能。但是,LIDAR只能生成稀疏的3D地图,从而导致信息丢失。每个像素获得高质量的地面深度数据很难获取。为了克服这一限制,我们提出了一种新颖的方法,将有前途的平面和视差几何管道与深度信息与U-NET监督学习网络相结合的结构信息结合在一起,与现有的基于流行的学习方法相比,这会导致定量和定性的改进。特别是,该模型在两个大规模且具有挑战性的数据集上进行了评估:Kitti Vision Benchmark和CityScapes数据集,并在相对错误方面取得了最佳性能。与纯深度监督模型相比,我们的模型在薄物体和边缘的深度预测上具有令人印象深刻的性能,并且与结构预测基线相比,我们的模型的性能更加强大。
translated by 谷歌翻译
深度估计是3D重建的具有挑战性的任务,以提高环境意识的准确性感测。这项工作带来了一系列改进的新解决方案,与现有方法相比,增加了一系列改进,这增加了对深度图的定量和定性理解。最近,卷积神经网络(CNN)展示了估计单眼图象的深度图的非凡能力。然而,传统的CNN不支持拓扑结构,它们只能在具有确定尺寸和重量的常规图像区域上工作。另一方面,图形卷积网络(GCN)可以处理非欧几里德数据的卷积,并且它可以应用于拓扑结构内的不规则图像区域。因此,在这项工作中为了保护对象几何外观和分布,我们的目的是利用GCN进行自我监督的深度估计模型。我们的模型包括两个并行自动编码器网络:第一个是一个自动编码器,它取决于Reset-50,并从输入图像和多尺度GCN上提取功能以估计深度图。反过来,第二网络将用于基于Reset-18的两个连续帧之间估计自我运动矢量(即3D姿势)。估计的3D姿势和深度图都将用于构建目标图像。使用与光度,投影和平滑度相关的损耗函数的组合用于应对不良深度预测,并保持对象的不连续性。特别是,我们的方法提供了可比性和有前途的结果,在公共基准和Make3D数据集中的高预测精度为89%,与最先进的解决方案相比,培训参数的数量减少了40%。源代码在https://github.com/arminmasoumian/gcndepth.git上公开可用
translated by 谷歌翻译