主动学习是一个非常常见但功能强大的框架,用于与人类在循环中的人类迭代和适应性采样子集,目的是实现标签效率。大多数现实世界数据集在类和切片中都有不平衡,并且相应地,数据集的一部分很少见。结果,在设计挖掘这些罕见数据实例的主动学习方法方面已经有很多工作。大多数方法都假设访问包含这些罕见数据实例的一组种子实例。但是,如果发生更极端的稀有性,可以合理地假设这些罕见的数据实例(类或切片)甚至可能在标记的种子集合中存在,并且对主动学习范式的关键需求是有效地发现这些罕见的数据实例。在这项工作中,我们提供了一个主动数据发现框架,该框架可以使用子管的条件增益和下管有条件的相互信息功能有效地挖掘未知的数据切片和类。我们提供了一个一般的算法框架,该框架在许多情况下都起作用,包括图像分类和对象检测,并与未标记集合中存在的稀有类和稀有切片一起使用。与现有的最新活跃学习方法相比,我们的方法表现出显着的准确性和标记效率提高,以积极发现这些稀有类别和切片。
translated by 谷歌翻译
基于深度神经网络的物体探测器在各种域中取得了巨大的成功,如自主车辆,生物医学成像等。众所周知,他们的成功取决于来自兴趣领域的大量数据。虽然深层模型在整体准确性方面经常表现良好,但它们通常在稀有但关键的数据切片上的性能斗争。例如,像“夜间摩托车”或“夜间摩托车”的数据切片通常很少见但是自动驾驶应用的非常关键的切片,如这种罕见的切片上的假底片可能导致违法的失败和事故。主动学习(AL)是一个着名的范例,可以逐步逐步地和自适应地构建循环中的人类训练数据集。然而,目前基于AL的采集功能并没有充分配备,以解决具有稀有片的真实数据集,因为它们基于图像的不确定性分数或全局描述符。我们提出了Talisman,一种用于使用子模块互信息的稀有切片的目标主动学习或物体检测的新框架。我们的方法使用利用感兴趣区域(ROI)的特征来实用的子模块互信息功能,以有效地靶向并获得具有稀有片的数据点。我们在标准Pascal Voc07 + 12和BDD100K上评估我们的框架,这是一个真实的自动驾驶数据集。我们观察到Talisman在稀有片的平均精度方面优于其他方法,以及地图。
translated by 谷歌翻译
通过选择最具信息丰富的样本,已证明主动学习可用于最小化标记成本。但是,现有的主动学习方法在诸如不平衡或稀有类别的现实方案中不适用于未标记集中的分发数据和冗余。在这项工作中,我们提出了类似的(基于子模块信息措施的主动学习),使用最近提出的子模块信息措施(SIM)作为采集函数的统一主动学习框架。我们认为类似的不仅在标准的主动学习中工作,而且还可以轻松扩展到上面考虑的现实设置,并充当活动学习的一站式解决方案,可以扩展到大型真实世界数据集。凭经验,我们表明,在罕见的课程的情况下,在罕见的阶级和〜5% - 10%的情况下,在罕见的几个图像分类任务的情况下,相似显着优异的活动学习算法像CiFar-10,Mnist和Imagenet。类似于Distil Toolkit的一部分:“https://github.com/decile-team/distil”。
translated by 谷歌翻译
随着数据集大小的不断增加,子集选择技术对于普遍的任务变得越来越重要。通常需要引导子集选择以实现某些探索,其中包括聚焦或针对某些数据点,同时避免他人。这些问题的示例包括:i)目标学习,目标是找到具有罕见类或稀有属性的子集,其中模型表现不佳,II)引导摘要,其中数据(例如,图像集合,文本,文档或视频) )总结了以更快的人类消费与特定的额外用户意图更快。受此类应用程序的动机,我们呈现棱镜,丰富的参数化子模块信息措施。通过小说函数及其参数化,PRISM提供了各种建模能力,该模型能力使得在子集的所需质量之间具有权衡,例如具有一组数据点的分集或表示和相似性/相似性。我们展示了如何应用于上面提到的两个真实问题的棱镜,这需要引导子集选择。在这样做时,我们表明棱镜有趣地概括了一些过去的工作,在其中加强了其广泛的效用。通过对不同数据集的广泛实验,我们展示了棱镜的优越性,在目标学习和引导的图像收集概述中
translated by 谷歌翻译
几个射击分类(FSC)需要使用几个(通常为1-5个)数据点的培训模型。事实证明,元学习能够通过培训各种其他分类任务来学习FSC的参数化模型。在这项工作中,我们提出了铂金(使用superodular互信息的半监督模型不可思议的元学习),这是一种新型的半监督模型不合理的元学习框架,使用了子模块化信息(SMI)函数来促进FSC的性能。在元训练期间,使用SMI函数在内部和外循环中利用铂金的数据,并获得元测试的更丰富的元学习参数化。我们在两种情况下研究白金的性能 - 1)未标记的数据点属于与某个插曲的标签集相同的类别集,以及2)在存在不属于的分布类别的地方标记的集合。我们在Miniimagenet,Tieredimagenet和几乎没有Shot-CIFAR100数据集的各种设置上评估了我们的方法。我们的实验表明,铂金优于MAML和半监督的方法,例如用于半监视的FSC的pseduo-Labeling,尤其是对于每个类别的标记示例比例很小。
translated by 谷歌翻译
深度神经网络对物体检测达到了高精度,但它们的成功铰链大量标记数据。为了减少标签依赖性,已经提出了各种主动学习策略,通常基于探测器的置信度。但是,这些方法偏向于高性能类,并且可以导致获取的数据集不是测试集数据的代表不好。在这项工作中,我们提出了一个统一的主动学习框架,这考虑了探测器的不确定性和鲁棒性,确保网络在所有类中表现良好。此外,我们的方法利用自动标记来抑制潜在的分布漂移,同时提高模型的性能。 Pascal VOC07 ​​+ 12和MS-Coco的实验表明,我们的方法始终如一地优于各种活跃的学习方法,在地图中产生高达7.7%,或降低标记成本的82%。代码将在接受纸张时发布。
translated by 谷歌翻译
Active learning as a paradigm in deep learning is especially important in applications involving intricate perception tasks such as object detection where labels are difficult and expensive to acquire. Development of active learning methods in such fields is highly computationally expensive and time consuming which obstructs the progression of research and leads to a lack of comparability between methods. In this work, we propose and investigate a sandbox setup for rapid development and transparent evaluation of active learning in deep object detection. Our experiments with commonly used configurations of datasets and detection architectures found in the literature show that results obtained in our sandbox environment are representative of results on standard configurations. The total compute time to obtain results and assess the learning behavior can thereby be reduced by factors of up to 14 when comparing with Pascal VOC and up to 32 when comparing with BDD100k. This allows for testing and evaluating data acquisition and labeling strategies in under half a day and contributes to the transparency and development speed in the field of active learning for object detection.
translated by 谷歌翻译
虽然深度学习(DL)是渴望数据的,并且通常依靠广泛的标记数据来提供良好的性能,但主动学习(AL)通过从未标记的数据中选择一小部分样本进行标签和培训来降低标签成本。因此,近年来,在有限的标签成本/预算下,深入的积极学习(DAL)是可行的解决方案,可在有限的标签成本/预算下最大化模型性能。尽管已经开发了大量的DAL方法并进行了各种文献综述,但在公平比较设置下对DAL方法的性能评估尚未可用。我们的工作打算填补这一空白。在这项工作中,我们通过重新实现19种引用的DAL方法来构建DAL Toolkit,即Deepal+。我们调查和分类与DAL相关的作品,并构建经常使用的数据集和DAL算法的比较实验。此外,我们探讨了影响DAL功效的一些因素(例如,批处理大小,训练过程中的时期数),这些因素为研究人员设计其DAL实验或执行DAL相关应用程序提供了更好的参考。
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
随着深入学习更加标签的目标,越来越多的论文已经研究了深度模型的主动学习(AL)。然而,普遍存在的实验设置中存在许多问题,主要源于缺乏统一的实施和基准。当前文献中的问题包括有时对不同AL算法的性能的矛盾观察,意外排除重要的概括方法,如数据增强和SGD进行优化,缺乏对al的标签效率等评价方面的研究,并且很少或没有在Al优于随机采样(RS)的情况下的清晰度。在这项工作中,我们通过我们的新开源AL Toolkit Distil在图像分类的背景下统一重新实现了最先进的AL算法,我们仔细研究了这些问题作为有效评估的方面。在积极的方面,我们表明AL技术为2美元至4倍以上$ 4 \倍。与使用数据增强相比,与卢比相比,高效。令人惊讶的是,当包括数据增强时,在使用徽章,最先进的方法,在简单的不确定性采样中不再存在一致的增益。然后,我们仔细分析现有方法如何具有不同数量的冗余和每个类的示例。最后,我们为AL从业者提供了几次见解,以考虑在将来的工作中考虑,例如Al批量大小的效果,初始化的效果,在每一轮中再培训模型的重要性以及其他见解。
translated by 谷歌翻译
主动学习在许多领域中展示了数据效率。现有的主动学习算法,特别是在深贝叶斯活动模型的背景下,严重依赖模型的不确定性估计的质量。然而,这种不确定性估计可能会严重偏见,特别是有限和不平衡的培训数据。在本文中,我们建议平衡,贝叶斯深度活跃的学习框架,减轻这种偏差的影响。具体地,平衡采用了一种新的采集功能,该函数利用了等效假设类别捕获的结构,并促进了不同的等价类别之间的分化。直观地,每个等价类包括具有类似预测的深层模型的实例化,并且平衡适应地将等同类的大小调整为学习进展。除了完整顺序设置之外,我们还提出批量平衡 - 顺序算法的泛化算法到批量设置 - 有效地选择批次的培训实施例,这些培训实施例是对模型改进的联合有效的培训实施例。我们展示批量平衡在多个基准数据集上实现了最先进的性能,用于主动学习,并且这两个算法都可以有效地处理通常涉及多级和不平衡数据的逼真挑战。
translated by 谷歌翻译
接受注释较弱的对象探测器是全面监督者的负担得起的替代方案。但是,它们之间仍然存在显着的性能差距。我们建议通过微调预先训练的弱监督检测器来缩小这一差距,并使用``Box-In-box''(bib'(bib)自动从训练集中自动选择了一些完全注销的样品,这是一种新颖的活跃学习专门针对弱势监督探测器的据可查的失败模式而设计的策略。 VOC07和可可基准的实验表明,围嘴表现优于其他活跃的学习技术,并显着改善了基本的弱监督探测器的性能,而每个类别仅几个完全宣布的图像。围嘴达到了完全监督的快速RCNN的97%,在VOC07上仅10%的全已通量图像。在可可(COCO)上,平均每类使用10张全面通量的图像,或同等的训练集的1%,还减少了弱监督检测器和完全监督的快速RCN之间的性能差距(In AP)以上超过70% ,在性能和数据效率之间表现出良好的权衡。我们的代码可在https://github.com/huyvvo/bib上公开获取。
translated by 谷歌翻译
主动学习(AL)算法旨在识别注释的最佳数据子集,使得深神经网络(DNN)在此标记子集上培训时可以实现更好的性能。 AL特别有影响的工业规模设置,其中数据标签成本高,从业者使用各种工具来处理,以提高模型性能。最近自我监督预测(SSP)的成功突出了利用丰富的未标记数据促进模型性能的重要性。通过将AL与SSP结合起来,我们可以使用未标记的数据,同时标记和培训特别是信息样本。在这项工作中,我们研究了Imagenet上的AL和SSP的组合。我们发现小型玩具数据集上的性能 - 文献中的典型基准设置 - 由于活动学习者选择的类不平衡样本,而不是想象中的性能。在我们测试的现有基线中,各种小型和大规​​模设置的流行AL算法未能以随机抽样优于差异。为了解决类别不平衡问题,我们提出了平衡选择(基础),这是一种简单,可伸缩的AL算法,通过选择比现有方法更加平衡样本来始终如一地始终采样。我们的代码可用于:https://github.com/zeyademam/active_learning。
translated by 谷歌翻译
We tackle the problem of novel class discovery and localization (NCDL). In this setting, we assume a source dataset with supervision for only some object classes. Instances of other classes need to be discovered, classified, and localized automatically based on visual similarity without any human supervision. To tackle NCDL, we propose a two-stage object detection network Region-based NCDL (RNCDL) that uses a region proposal network to localize regions of interest (RoIs). We then train our network to learn to classify each RoI, either as one of the known classes, seen in the source dataset, or one of the novel classes, with a long-tail distribution constraint on the class assignments, reflecting the natural frequency of classes in the real world. By training our detection network with this objective in an end-to-end manner, it learns to classify all region proposals for a large variety of classes, including those not part of the labeled object class vocabulary. Our experiments conducted using COCO and LVIS datasets reveal that our method is significantly more effective than multi-stage pipelines that rely on traditional clustering algorithms. Furthermore, we demonstrate the generality of our approach by applying our method to a large-scale Visual Genome dataset, where our network successfully learns to detect various semantic classes without direct supervision.
translated by 谷歌翻译
主动学习通过从未标记的数据集中标记有信息的样本来有效地构建标记的数据集。在现实世界中的活跃学习方案中,考虑到所选样本的多样性至关重要,因为存在许多冗余或高度相似的样本。核心设定方法是基于多样性的有希望的方法,根据样品之间的距离选择不同的样品。然而,与选择最困难的样本的基于不确定性的方法相比,该方法的性能差,神经模型表现出低置信度。在这项工作中,我们通过密度的晶状体分析特征空间,有趣的是,观察到局部稀疏区域往往比密集区域具有更多信息样本。通过我们的分析,我们将核心设定方法赋予密度意识,并提出密度感知的核心集(DACS)。该策略是估计未标记样品的密度,并主要从稀疏区域选择不同的样品。为了减少估计密度的计算瓶颈,我们还基于对区域敏感的散列引入了新的密度近似。实验结果清楚地表明了DAC在分类和回归任务中的功效,并特别表明DAC可以在实际情况下产生最先进的性能。由于DACS微弱地取决于神经体系结构,因此我们提出了一种简单而有效的组合方法,以表明现有方法可以与DAC合并。
translated by 谷歌翻译
大规模数据集在计算机视觉中起着至关重要的作用。但是当前的数据集盲目注释而没有与样品区分的区分,从而使数据收集效率低下且不计。开放的问题是如何积极地构建大型数据集。尽管先进的主动学习算法可能是答案,但我们在实验上发现它们在分发数据广泛的现实注释方案中是la脚的。因此,这项工作为现实的数据集注释提供了一个新颖的主动学习框架。配备了此框架,我们构建了一个高质量的视觉数据集 - 竹子,由69m的图像分类注释,带有119K类别,带有809个类别的28m对象边界框注释。我们通过从几个知识库中整合的层次分类法来组织这些类别。分类注释比Imagenet22K大四倍,检测的注释比Object365大三倍。与ImagEnet22K和Objects365相比,预先训练的竹子在各种下游任务中实现了卓越的性能(分类的6.2%增长,检测到2.1%的增长)。我们认为,我们的积极学习框架和竹子对于将来的工作至关重要。
translated by 谷歌翻译
研究表明,当训练数据缺少注释时,对象检测器的性能下降,即稀疏注释数据。当代方法专注于缺少地面实话注释的代理,无论是伪标签的形式还是通过在训练期间重新称重梯度。在这项工作中,我们重新审视了稀疏注释物体检测的制定。我们观察到稀疏注释的物体检测可以被认为是区域级的半监督对象检测问题。在此洞察力上,我们提出了一种基于区域的半监督算法,它自动识别包含未标记的前景对象的区域。我们的算法然后以不同的方式处理标记和未标记的前景区域,在半监督方法中进行常见做法。为了评估所提出的方法的有效性,我们对普斯卡尔库尔和可可数据集的稀疏注释方法常用的五种分裂进行详尽的实验,并实现最先进的性能。除此之外,我们还表明,我们的方法在标准半监督设置上实现了竞争性能,证明了我们的方法的实力和广泛适用性。
translated by 谷歌翻译
The performance of deep neural networks improves with more annotated data. The problem is that the budget for annotation is limited. One solution to this is active learning, where a model asks human to annotate data that it perceived as uncertain. A variety of recent methods have been proposed to apply active learning to deep networks but most of them are either designed specific for their target tasks or computationally inefficient for large networks. In this paper, we propose a novel active learning method that is simple but task-agnostic, and works efficiently with the deep networks. We attach a small parametric module, named "loss prediction module," to a target network, and learn it to predict target losses of unlabeled inputs. Then, this module can suggest data that the target model is likely to produce a wrong prediction. This method is task-agnostic as networks are learned from a single loss regardless of target tasks. We rigorously validate our method through image classification, object detection, and human pose estimation, with the recent network architectures. The results demonstrate that our method consistently outperforms the previous methods over the tasks.
translated by 谷歌翻译
The generalisation performance of a convolutional neural networks (CNN) is majorly predisposed by the quantity, quality, and diversity of the training images. All the training data needs to be annotated in-hand before, in many real-world applications data is easy to acquire but expensive and time-consuming to label. The goal of the Active learning for the task is to draw most informative samples from the unlabeled pool which can used for training after annotation. With total different objective, self-supervised learning which have been gaining meteoric popularity by closing the gap in performance with supervised methods on large computer vision benchmarks. self-supervised learning (SSL) these days have shown to produce low-level representations that are invariant to distortions of the input sample and can encode invariance to artificially created distortions, e.g. rotation, solarization, cropping etc. self-supervised learning (SSL) approaches rely on simpler and more scalable frameworks for learning. In this paper, we unify these two families of approaches from the angle of active learning using self-supervised learning mainfold and propose Deep Active Learning using BarlowTwins(DALBT), an active learning method for all the datasets using combination of classifier trained along with self-supervised loss framework of Barlow Twins to a setting where the model can encode the invariance of artificially created distortions, e.g. rotation, solarization, cropping etc.
translated by 谷歌翻译
Recent aerial object detection models rely on a large amount of labeled training data, which requires unaffordable manual labeling costs in large aerial scenes with dense objects. Active learning is effective in reducing the data labeling cost by selectively querying the informative and representative unlabelled samples. However, existing active learning methods are mainly with class-balanced setting and image-based querying for generic object detection tasks, which are less applicable to aerial object detection scenario due to the long-tailed class distribution and dense small objects in aerial scenes. In this paper, we propose a novel active learning method for cost-effective aerial object detection. Specifically, both object-level and image-level informativeness are considered in the object selection to refrain from redundant and myopic querying. Besides, an easy-to-use class-balancing criterion is incorporated to favor the minority objects to alleviate the long-tailed class distribution problem in model training. To fully utilize the queried information, we further devise a training loss to mine the latent knowledge in the undiscovered image regions. Extensive experiments are conducted on the DOTA-v1.0 and DOTA-v2.0 benchmarks to validate the effectiveness of the proposed method. The results show that it can save more than 75% of the labeling cost to reach the same performance compared to the baselines and state-of-the-art active object detection methods. Code is available at https://github.com/ZJW700/MUS-CDB
translated by 谷歌翻译