医疗机器人技术可以帮助改善和扩大医疗服务的影响力。医疗机器人的一个主要挑战是机器人与患者之间的复杂物理相互作用是必须安全的。这项工作介绍了基于医疗应用中分形阻抗控制(FIC)的最近引入的控制体系结构的初步评估。部署的FIC体系结构在主机和复制机器人之间延迟很强。它可以在接纳和阻抗行为之间在线切换,并且与非结构化环境的互动是强大的。我们的实验分析了三种情况:远程手术,康复和远程超声扫描。实验不需要对机器人调整进行任何调整,这在操作员没有调整控制器所需的工程背景的医疗应用中至关重要。我们的结果表明,可以使用手术刀进行切割机器人,进行超声扫描并进行远程职业治疗。但是,我们的实验还强调了需要更好的机器人实施例,以精确控制3D动态任务中的系统。
translated by 谷歌翻译
机器人远程操作将使我们能够在危险或偏远的环境中执行复杂的操纵任务,例如行星勘探或核退役所需的。这项工作提出了使用被动分形阻抗控制器(FIC)的新型远程注射架构,该结构并不依赖于主动粘性组件以保证稳定性。与传统的阻抗控制器在理想条件下(无延迟和最大通信带宽)相比,我们提出的方法在交互作用方面产生了更高的透明度,并在我们的远程注射测试方案中证明了卓越的敏捷性和能力。我们还以高达1 s的极端延迟和通信带宽低至10 Hz的极端延迟来验证其性能。所有结果在具有挑战性的条件下使用拟议的控制器时,无论操作员的专业知识如何,所有结果都可以验证一致的稳定性。
translated by 谷歌翻译
对控制框架的兴趣越来越大,能够将机器人从工业笼子转移到非结构化环境并与人类共存。尽管某些特定应用(例如,医学机器人技术)有了显着改善,但仍然需要一个一般控制框架来改善鲁棒性和运动动力学。被动控制者在这个方向上显示出令人鼓舞的结果。但是,他们通常依靠虚拟能源储罐,只要它们不耗尽能量,就可以保证被动性。在本文中,提出了一个分形吸引子来实施可变的阻抗控制器,该控制器可以保留不依赖能箱的无源性。控制器使用渐近稳定电位场在所需状态周围生成一个分形吸引子,从而使控制器稳健地对离散化和数值集成误差。结果证明它可以在相互作用过程中准确跟踪轨迹和最终效应力。因此,这些属性使控制器非常适合需要在最终效应器上进行鲁棒动态相互作用的应用。
translated by 谷歌翻译
需要强大的动态互动才能与人类一起在日常环境中移动机器人。优化和学习方法已用于模仿和再现人类运动。但是,它们通常不健壮,其概括是有限的。这项工作提出了用于机器人操纵器的层次控制体系结构,并提供了在未知相互作用动力学期间重现类似人类运动的功能。我们的结果表明,复制的最终效应轨迹可以保留通过运动捕获系统记录的初始人类运动的主要特征,并且对外部扰动具有鲁棒性。数据表明,由于硬件的物理限制无法达到人类运动中记录的相同速度,因此很难复制一些详细的运动。然而,可以通过使用更好的硬件来解决这些技术问题,我们提出的算法仍然可以应用于模仿动作。
translated by 谷歌翻译
Robotic teleoperation is a key technology for a wide variety of applications. It allows sending robots instead of humans in remote, possibly dangerous locations while still using the human brain with its enormous knowledge and creativity, especially for solving unexpected problems. A main challenge in teleoperation consists of providing enough feedback to the human operator for situation awareness and thus create full immersion, as well as offering the operator suitable control interfaces to achieve efficient and robust task fulfillment. We present a bimanual telemanipulation system consisting of an anthropomorphic avatar robot and an operator station providing force and haptic feedback to the human operator. The avatar arms are controlled in Cartesian space with a direct mapping of the operator movements. The measured forces and torques on the avatar side are haptically displayed to the operator. We developed a predictive avatar model for limit avoidance which runs on the operator side, ensuring low latency. The system was successfully evaluated during the ANA Avatar XPRIZE competition semifinals. In addition, we performed in lab experiments and carried out a small user study with mostly untrained operators.
translated by 谷歌翻译
本文提出了一种移动超级机器人方法,可在人类机器人结合的行动中进行身体援助。该研究从对超人概念的描述开始。这个想法是开发和利用可以遵循人类机器人操作命令的移动协作系统,通过三个主要组件执行工业任务:i)物理界面,ii)人类机器人互动控制器和iii)超级机器人身体。接下来,我们从理论和硬件的角度介绍了框架内的两个可能的实现。第一个系统称为MOCA-MAN,由冗余的扭矩控制机器人组和Omni方向移动平台组成。第二个称为Kairos-Man,由高付费6多速速度控制机器人组和Omni方向移动平台形成。该系统共享相同的接收界面,通过该接口将用户扳手转换为Loco-andipulation命令,该命令由每个系统的全身控制器生成。此外,提出了一个具有多个和跨性别主题的彻底用户研究,以揭示这两个系统在努力和灵活的任务中的定量性能。此外,我们提供了NASA-TLX问卷的定性结果,以证明超级人物的潜力及其从用户的观点中的可接受性。
translated by 谷歌翻译
远程运行是一种广泛采用的策略,用于控制需要高度灵巧运动和关键高级智力的复杂任务的机器人操纵器。经典的远程操作方案基于操纵杆的控制,或基于更直观的接口,这些界面将用户臂运动直接映射到一个机器人臂的运动中。当执行给定任务需要可重新配置的多个机器人ARM系统时,这些方法会限制。实际上,两个或多个机器人臂的同时进行近距离运行可以扩展操纵单元的工作空间,或增加其总有效载荷或提供其他优势。在可重新配置的多臂系统的不同阶段中,每个机器人可以充当独立的手臂,也可以充当一对合作的手臂,或者是虚拟大型机器人手的手指之一。该手稿提出了一个新型的远程注射框架,可以使个人和组合任何数量的机器人臂控制。多亏了设计的控制体系结构,人类操作员可以直观地选择提出的控制方式和操纵器,以使任务方便地通过用户界面执行。此外,通过Tele-Tele-Inverance范式,该系统可以通过让机器人模仿人类操作员的手臂阻抗和位置参考来解决需要物理互动的复杂任务。拟议的框架已通过8个主题,控制4个弗兰卡·埃米卡·熊猫机器人,并用7多杆执行远程触发任务。实验的定性结果向我们展示了我们框架的有希望的适用性。
translated by 谷歌翻译
模型预测控制(MPC)方案已经证明了它们在控制高自由度(DOF)复杂机器人系统方面的效率。但是,它们的计算成本很高,更新速度约为数十万。这种相对较慢的更新速率阻碍了这种系统稳定的触觉远程操作的可能性,因为缓慢的反馈回路可能会导致对操作员的不稳定性和透明度的丧失。这项工作为MPC控制的复杂机器人系统的透明远程操作提供了一个新颖的框架。特别是,我们采用反馈MPC方法并利用其结构来以快速速率计算运营商输入,该快速速率与MPC循环本身的更新率无关。我们在移动操纵器平台上演示了我们的框架,并表明它可以显着提高触觉远程操作的透明度和稳定性。我们还强调,所提出的反馈结构是令人满意的,并且不违反最佳控制问题中定义的任何约束。据我们所知,这项工作是使用全身MPC框架的双边操纵器的双边远程操作的首次实现。
translated by 谷歌翻译
在处理多肢移动操纵器的触觉耳机时,尚未得到适当地解决从触觉设备和远程机器人之间的通信链路产生的稳定效果的问题。在这项工作中,我们提出了一种被动控制架构来触觉地垂直腿移动操纵器,同时在主设备和从控制器中存在延迟和频率不匹配的存在下保持稳定。在主侧,提出了对控制输入的离散时间能调制。在从侧,被动约束包括在基于优化的全身控制器中以满足能量限制。混合龙动力遥气局方案允许人工操作者在姿势模式下远程操作机器人的末端效应器,以及其基运动模式的基本速度。由此产生的控制架构在四足机器人上演示,具有添加到网络的人为延迟。
translated by 谷歌翻译
即使是最强大的自主行为也可能失败。这项研究的目的是在自主任务执行期间恢复和从失败中收集数据,以便将来可以防止它们。我们建议对实时故障恢复和数据收集进行触觉干预。Elly是一个系统,可以在自主机器人行为和人类干预之间进行无缝过渡,同时从人类恢复策略中收集感觉信息。系统和我们的设计选择在单臂任务上进行了实验验证 - 在插座中安装灯泡 - 以及双层任务 - 拧上瓶盖的帽子 - 使用两个配备的4手指握把。在这些示例中,Elly在总共40次运行中实现了超过80%的任务完成。
translated by 谷歌翻译
本文为复杂和物理互动的任务提供了用于移动操纵器的混合学习和优化框架。该框架利用了入学型物理接口,以获得直观而简化的人类演示和高斯混合模型(GMM)/高斯混合物回归(GMR),以根据位置,速度和力剖面来编码和生成学习的任务要求。接下来,使用GMM/GMR生成的所需轨迹和力剖面,通过用二次程序加强能量箱增强笛卡尔阻抗控制器的阻抗参数可以在线优化,以确保受控系统的消极性。进行了两个实验以验证框架,将我们的方法与两种恒定刚度(高和低)的方法进行了比较。结果表明,即使在存在诸如意外的最终效应碰撞等干扰的情况下,该方法在轨迹跟踪和生成的相互作用力方面都优于其他两种情况。
translated by 谷歌翻译
由于事件的范围有限,在复杂且高度可变的环境中,避免路径计划和碰撞是具有挑战性的。在文献中,有多种基于模型和学习的方法需要有效地部署大量的计算资源,并且可能具有有限的一般性。我们提出了一种基于全球稳定的被动控制器的计划算法,该算法可以在挑战性的环境条件下使用有限的计算资源计划平滑轨迹。该体系结构将最近提出的分形阻抗控制器与有限时间不变性区域结合在一起。由于该方法基于阻抗控制器,因此它也可以直接用作力/扭矩控制器。我们在模拟中验证了我们的方法,以通过发放Via-toints的发行及其对低带宽反馈的稳健性来分析互动导航在挑战凹域中的能力。使用11个代理的群模拟验证了所提出方法的可扩展性。我们已经在自动式轮式平台上进行了硬件实验,以验证与动态剂(即人和机器人)相互作用的平滑度和稳健性。与依赖数字优化的其他方法相比,所提出的本地规划师的计算复杂性可以通过低功率微控制器的部署降低能源消耗。
translated by 谷歌翻译
我们描述了更改 - 联系机器人操作任务的框架,要求机器人与对象和表面打破触点。这种任务的不连续交互动态使得难以构建和使用单个动力学模型或控制策略,并且接触变化期间动态的高度非线性性质可能对机器人和物体造成损害。我们提出了一种自适应控制框架,使机器人能够逐步学习以预测更改联系人任务中的接触变化,从而了解了碎片连续系统的交互动态,并使用任务空间可变阻抗控制器提供平滑且精确的轨迹跟踪。我们通过实验比较我们框架的表现,以确定所需的代表性控制方法,以确定我们框架的自适应控制和增量学习组件需要在变化 - 联系机器人操纵任务中存在不连续动态的平稳控制。
translated by 谷歌翻译
在这项研究中,提出了一个自适应对象可变形性不足的人类机器人协作运输框架。提出的框架使通过对象传输的触觉信息与从运动捕获系统获得的人类运动信息结合在一起,以在移动协作机器人上产生反应性的全身运动。此外,它允许基于算法在共同转移过程中以直观而准确的方式旋转对象,该算法使用躯干和手动运动检测人旋转意图。首先,我们通过使用由Omni方向移动基础和协作机器人组组成的移动操纵器,通过对象变形范围的两个末端(即纯粹的铝制杆和高度变形绳)来验证框架。接下来,将其性能与12个受试者用户研究中部分可变形对象的共同携带任务中的录取控制器进行了比较。该实验的定量和定性结果表明,所提出的框架可以有效地处理物体的运输,而不管其可变形性如何,并为人类伴侣提供直观的援助。最后,我们在不同的情况下展示了我们的框架的潜力,在不同的情况下,人类和机器人使用可变形的床单共同传输了手工蛋白。
translated by 谷歌翻译
为了成为人类的有效伴侣,机器人必须越来越舒适地与环境接触。不幸的是,机器人很难区分``足够的''和``太多''力:完成任务需要一些力量,但太多可能会损害设备或伤害人类。设计合规的反馈控制器(例如刚度控制)的传统方法需要对控制参数进行手工调整,并使建立安全,有效的机器人合作者变得困难。在本文中,我们提出了一种新颖而易于实现的力反馈控制器,该反馈控制器使用控制屏障功能(CBF)直接从用户的最大允许力和扭矩的用户规格中得出合并的控制器。我们比较了传统僵硬控制的方法,以证明控制架构的潜在优势,并在人类机器人协作任务中证明了控制器的有效性:对笨重对象的合作操纵。
translated by 谷歌翻译
旨在进一步实现对机器人操纵中的影响的影响,提出了一种控制框架,其直接解决了通过跟踪机器人操纵器的控制所构成的挑战,该机器人操纵器的控制被任务执行与多个接触点相关联的名义上同时冲击。为此,我们扩展了参考展示框架,该框架利用刚性冲击图采用刚性冲击地图的扩展前和冲击后参考,在非弹性同时撞击的假设下确定。在实践中,机器人不会在冲击力矩的参考上居住;结果通常会发生不同接触点处的一系列冲击。我们的新方法通过引入额外的中间控制模式,在此上下文中扩展了参考传播。在该模式中,扭矩命令仍然基于达到撞击参考,目的是达到目标接触状态,但是禁用速度反馈,因为这可能由于快速的速度而可能是有害的。随着真实的实现,该方法是使用QP控制框架制定的,并在刚性机器人模型和具有柔性接头的现实机器人模型上使用数值模拟进行验证。
translated by 谷歌翻译
人类的生活是无价的。当需要完成危险或威胁生命的任务时,机器人平台可能是更换人类运营商的理想选择。我们在这项工作中重点关注的任务是爆炸性的手段。鉴于移动机器人在多种环境中运行时表现出强大的功能,机器人触觉有可能提供安全解决方案。但是,与人类的运作相比,在此阶段,自主权可能具有挑战性和风险。远程运行可能是完整的机器人自主权和人类存在之间的折衷方案。在本文中,我们提出了一种相对便宜的解决方案,可用于远程敏感和机器人远程操作,以使用腿部操纵器(即,腿部四足机器人的机器人和RGB-D传感)来协助爆炸的军械处置。我们提出了一种新型的系统集成,以解决四足动物全身控制的非平凡问题。我们的系统基于可穿戴的基于IMU的运动捕获系统,该系统用于远程操作和视觉触发性的VR耳机。我们在实验中验证了现实世界中的方法,用于需要全身机器人控制和视觉触发的机车操作任务。
translated by 谷歌翻译
在这项工作中,我们介绍了一个自适应控制框架,用于具有未知变形行为的对象的人类机器人协作运输。提出的框架将通过对象传输的触觉信息和从运动捕获系统获得的人体的运动学信息作为输入,以在移动协作机器人上创建反应性的全身运动。为了通过实验验证我们的框架,我们在部分可变形的对象的共同投资任务中将其性能与入学控制器进行了比较。我们还展示了框架的潜力,同时共同传输刚性(铝杆)和高度变形(绳索)对象。一个由Omni方向移动基础,协作机器人组和机器人手组成的移动操纵器被用作实验中的机器人合作伙伴。 12个受试者实验的定量和定性结果表明,所提出的框架可以有效地处理不明变形的对象,并为人类伴侣提供直观的援助。
translated by 谷歌翻译
在本次调查中,我们介绍了执行需要不同于环境的操作任务的机器人的当前状态,使得机器人必须隐含地或明确地控制与环境的接触力来完成任务。机器人可以执行越来越多的人体操作任务,并且在1)主题上具有越来越多的出版物,其执行始终需要联系的任务,并且通过利用完美的任务来减轻环境来缓解不确定性信息,可以在没有联系的情况下进行。最近的趋势已经看到机器人在留下的人类留给人类,例如按摩,以及诸如PEG孔的经典任务中,对其他类似任务的概率更有效,更好的误差容忍以及更快的规划或学习任务。因此,在本调查中,我们涵盖了执行此类任务的机器人的当前阶段,从调查开始所有不同的联系方式机器人可以执行,观察这些任务是如何控制和表示的,并且最终呈现所需技能的学习和规划完成这些任务。
translated by 谷歌翻译
全渠道的人类授权移动操纵器是一个实验平台,用于测试自动和人为多动物移动操作的控制体系结构。全渠道由mecanum-wheel全向移动基础和系列弹性三角型平行操纵器组成,它是一类更广泛的移动协作机器人(“ mocobots”)的特定实现,灵活和明确的有效载荷。 Mocobot的关键特征包括被动依从性,为人类的安全和有效载荷的安全性以及高保真的最终效应力控制,而与移动基础的潜在不精确运动无关。我们描述了Mocobots团队设计的一般考虑;根据这些考虑因素的设计;操纵器和移动基础控制器,以实现有用的多机器人协作行为;以及对大型,笨拙的有效载荷的人类多机协作移动操作进行的最初实验。对于这些实验,通过有效载荷,人类和全网络之间的唯一沟通是机械的。
translated by 谷歌翻译