Accurate high-altitude wind forecasting is important for air traffic control. And the large volume of data available for this task makes deep neural network-based models a possibility. However, special methods are required because the data is measured only sparsely: along the main aircraft trajectories and arranged sparsely in space, namely along the main air corridors. Several deep learning approaches have been proposed, and in this work, we show that Transformers can fit this data efficiently and are able to extrapolate coherently from a context set. We show this by an extensive comparison of Transformers to numerous existing deep learning-based baselines in the literature. Besides high-altitude wind forecasting, we compare competing models on other dynamical physical systems, namely those modelled by partial differential equations, in particular the Poisson equation and Darcy Flow equation. For these experiments, in the case where the data is arranged non-regularly in space, Transformers outperform all the other evaluated methods. We also compared them in a more standard setup where the data is arranged on a grid and show that the Transformers are competitive with state-of-the-art methods, even though it does not require regular spacing. The code and datasets of the different experiments will be made publicly available at publication time.
translated by 谷歌翻译
为了提高风能生产的安全性和可靠性,短期预测已成为最重要的。这项研究的重点是挪威大陆架的多步时时空风速预测。图形神经网络(GNN)体系结构用于提取空间依赖性,具有不同的更新功能以学习时间相关性。这些更新功能是使用不同的神经网络体系结构实现的。近年来,一种这样的架构,即变压器,在序列建模中变得越来越流行。已经提出了对原始体系结构的各种改动,以更好地促进时间序列预测,本研究的重点是告密者Logsparse Transformer和AutoFormer。这是第一次将logsparse变压器和自动形态应用于风预测,并且第一次以任何一种或告密者的形式在时空设置以进行风向预测。通过比较时空长的短期记忆(LSTM)和多层感知器(MLP)模型,该研究表明,使用改变的变压器体系结构作为GNN中更新功能的模型能够超越这些功能。此外,我们提出了快速的傅立叶变压器(FFTRANSFORMER),该变压器是基于信号分解的新型变压器体系结构,由两个单独的流组成,分别分析趋势和周期性成分。发现FFTRANSFORMER和自动成型器可在10分钟和1小时的预测中取得优异的结果,而FFTRANSFORMER显着优于所有其他模型的4小时预测。最后,通过改变图表表示的连通性程度,该研究明确说明了所有模型如何利用空间依赖性来改善局部短期风速预测。
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
在许多科学和工程领域(例如流体动力学,天气预报及其反相反的优化问题)中,模拟大规模系统的部分微分方程(PDE)的时间演变至关重要。但是,由于它们的局部进化,因此经典的求解器和最近的基于深度学习的替代模型通常在计算中都非常密集:他们需要在推理期间的每个时间步骤更新每个离散的单元格的状态。在这里,我们开发了PDE(LE-PDE)的潜在进化,这是一种简单,快速和可扩展的方法,可以加速PDE的仿真和逆优化。 Le-Pde学习了系统的紧凑,全球表示,并通过学习的潜在进化模型有效地在潜在空间中充分进化。 LE-PDE通过在长时间推出期间更新的潜在维度要更新而与输入空间更新相比,可以实现加速。我们介绍了新的学习目标,以有效地学习这种潜在动力,以确保长期稳定。我们进一步介绍了通过在潜在空间中通过反向传播来加速PDE的边界条件的反向优化的技术,以及一种退火技术来解决边界条件的非差异性和稀疏相互作用。我们以非线性PDE的1D基准测试我们的方法,2D Navier-Stokes流入湍流相,并在2D Navier-Stokes流中对边界条件进行反相反优化。与最先进的基于深度学习的替代模型和其他强大的基线相比,我们证明了更新的尺寸降低了128倍,速度提高了15倍,同时提高了竞争精度。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
监督运营商学习是一种新兴机器学习范例,用于建模时空动态系统的演变和近似功能数据之间的一般黑盒关系的应用。我们提出了一种新颖的操作员学习方法,LOCA(学习操作员耦合注意力),激励了最近的注意机制的成功。在我们的体系结构中,输入函数被映射到有限的一组特征,然后按照依赖于输出查询位置的注意重量平均。通过将这些注意重量与积分变换一起耦合,LOCA能够明确地学习目标输出功能中的相关性,使我们能够近似非线性运算符,即使训练集测量中的输出功能的数量非常小。我们的配方伴随着拟议模型的普遍表现力的严格近似理论保证。经验上,我们在涉及普通和部分微分方程的系统管理的若干操作员学习场景中,评估LOCA的表现,以及黑盒气候预测问题。通过这些场景,我们展示了最先进的准确性,对噪声输入数据的鲁棒性以及在测试数据集上始终如一的错误传播,即使对于分发超出预测任务。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
We introduce a machine-learning (ML)-based weather simulator--called "GraphCast"--which outperforms the most accurate deterministic operational medium-range weather forecasting system in the world, as well as all previous ML baselines. GraphCast is an autoregressive model, based on graph neural networks and a novel high-resolution multi-scale mesh representation, which we trained on historical weather data from the European Centre for Medium-Range Weather Forecasts (ECMWF)'s ERA5 reanalysis archive. It can make 10-day forecasts, at 6-hour time intervals, of five surface variables and six atmospheric variables, each at 37 vertical pressure levels, on a 0.25-degree latitude-longitude grid, which corresponds to roughly 25 x 25 kilometer resolution at the equator. Our results show GraphCast is more accurate than ECMWF's deterministic operational forecasting system, HRES, on 90.0% of the 2760 variable and lead time combinations we evaluated. GraphCast also outperforms the most accurate previous ML-based weather forecasting model on 99.2% of the 252 targets it reported. GraphCast can generate a 10-day forecast (35 gigabytes of data) in under 60 seconds on Cloud TPU v4 hardware. Unlike traditional forecasting methods, ML-based forecasting scales well with data: by training on bigger, higher quality, and more recent data, the skill of the forecasts can improve. Together these results represent a key step forward in complementing and improving weather modeling with ML, open new opportunities for fast, accurate forecasting, and help realize the promise of ML-based simulation in the physical sciences.
translated by 谷歌翻译
时间序列预测是一个重要的问题,具有许多现实世界的应用。深度神经网络的合奏最近实现了令人印象深刻的预测准确性,但是在许多现实世界中,如此大的合奏是不切实际的。变压器模型已成功应用于各种具有挑战性的问题。我们建议对原始变压器体系结构进行新颖的改编,重点是时间序列预测的任务,称为持久性初始化。该模型通过使用与残留跳过连接的乘法门控机制初始化为幼稚的持久性模型。我们使用具有REZERO标准化和旋转位置编码的解码器变压器,但适应适用于任何自动回归神经网络模型。我们评估了有关挑战性M4数据集的拟议体系结构,与基于合奏的方法相比,取得了竞争性能。我们还将最近提议的变压器模型进行比较,以预测时间序列,显示了M4数据集中的卓越性能。广泛的消融研究表明,持久性初始化会导致更好的性能和更快的收敛性。随着模型的大小的增加,只有我们提出的适应性增长的模型。我们还进行了一项额外的消融研究,以确定正常化和位置编码的选择的重要性,并发现旋转编码的使用和REZERO归一化对于良好的预测性能至关重要。
translated by 谷歌翻译
在本文中,我们在关注最先进的变压器中应用自我关注,这是第一次需要与部分微分方程相关的数据驱动的操作员学习问题。努力放在一起解释启发式,提高注意机制的功效。通过在希尔伯特空间中采用操作员近似理论,首次证明了Softmax归一化在缩放的点产品中的关注中足够但没有必要。在没有软墨中的情况下,可以证明线性化变换器变型的近似容量与Petrov-Galerkin投影层 - 明智相当,并且估计是相对于序列长度的独立性。提出了一种模仿Petrov-Galerkin投影的新层归一化方案,以允许缩放通过注意层传播,这有助于模型在具有非通信数据的操作员学习任务中实现显着准确性。最后,我们展示了三个操作员学习实验,包括粘虫汉堡方程,接口达西流程,以及逆接口系数识别问题。新提出的简单关注的算子学习者Galerkin变压器,在Softmax归一化的同行中,培训成本和评估准确性都显示出显着的改进。
translated by 谷歌翻译
傅里叶神经运营商(FNO)是一种基于学习的方法,用于有效地模拟部分微分方程。我们提出了分解的傅立叶神经运营商(F-FNO),允许与更深的网络更好地推广。通过仔细组合傅里叶分解,跨所有层,Markov属性和残差连接的共享内核积分运算符,F-FNOS在Navier-Stokes基准数据集的最动力设置上达到六倍的误差。我们表明我们的模型保持了2%的错误率,同时仍然比数值求解器更快地运行幅度,即使问题设置扩展到包括诸如粘度和时变力的附加上下文,也是如此。这使得与相同的预制神经网络能够模拟巨大不同的条件。
translated by 谷歌翻译
Solving partial differential equations is difficult. Recently proposed neural resolution-invariant models, despite their effectiveness and efficiency, usually require equispaced spatial points of data. However, sampling in spatial domain is sometimes inevitably non-equispaced in real-world systems, limiting their applicability. In this paper, we propose a Non-equispaced Fourier PDE Solver (\textsc{NFS}) with adaptive interpolation on resampled equispaced points and a variant of Fourier Neural Operators as its components. Experimental results on complex PDEs demonstrate its advantages in accuracy and efficiency. Compared with the spatially-equispaced benchmark methods, it achieves superior performance with $42.85\%$ improvements on MAE, and is able to handle non-equispaced data with a tiny loss of accuracy. Besides, to our best knowledge, \textsc{NFS} is the first ML-based method with mesh invariant inference ability to successfully model turbulent flows in non-equispaced scenarios, with a minor deviation of the error on unseen spatial points.
translated by 谷歌翻译
时间变化数量的估计是医疗保健和金融等领域决策的基本组成部分。但是,此类估计值的实际实用性受到它们量化预测不确定性的准确程度的限制。在这项工作中,我们解决了估计高维多元时间序列的联合预测分布的问题。我们提出了一种基于变压器体系结构的多功能方法,该方法使用基于注意力的解码器估算关节分布,该解码器可被学会模仿非参数Copulas的性质。最终的模型具有多种理想的属性:它可以扩展到数百个时间序列,支持预测和插值,可以处理不规则和不均匀的采样数据,并且可以在训练过程中无缝地适应丢失的数据。我们从经验上证明了这些属性,并表明我们的模型在多个现实世界数据集上产生了最新的预测。
translated by 谷歌翻译
具有经典数字求解器的湍流模拟需要非常高分辨率的网格来准确地解决动态。在这里,我们以低空间和时间分辨率培训学习模拟器,以捕获高分辨率产生的湍流动态。我们表明我们所提出的模型可以比各种科学相关指标的相同低分辨率的经典数字求解器更准确地模拟湍流动态。我们的模型从数据训练结束到底,能够以低分辨率学习一系列挑战性的混乱和动态动态,包括最先进的雅典娜++发动机产生的轨迹。我们表明,我们的更简单,通用体系结构优于来自所学到的湍流模拟文献的各种专业的湍流特异性架构。一般来说,我们看到学习的模拟器产生不稳定的轨迹;但是,我们表明调整训练噪音和时间下采样解决了这个问题。我们还发现,虽然超出培训分配的泛化是学习模型,训练噪声,卷积架构以及增加损失约束的挑战。广泛地,我们得出的结论是,我们所知的模拟器优于传统的求解器在较粗糙的网格上运行,并强调简单的设计选择可以提供稳定性和鲁棒的泛化。
translated by 谷歌翻译
In this paper, we present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast. For this purpose, we establish a data-driven environment by downloading $43$ years of hourly global weather data from the 5th generation of ECMWF reanalysis (ERA5) data and train a few deep neural networks with about $256$ million parameters in total. The spatial resolution of forecast is $0.25^\circ\times0.25^\circ$, comparable to the ECMWF Integrated Forecast Systems (IFS). More importantly, for the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy (latitude-weighted RMSE and ACC) of all factors (e.g., geopotential, specific humidity, wind speed, temperature, etc.) and in all time ranges (from one hour to one week). There are two key strategies to improve the prediction accuracy: (i) designing a 3D Earth Specific Transformer (3DEST) architecture that formulates the height (pressure level) information into cubic data, and (ii) applying a hierarchical temporal aggregation algorithm to alleviate cumulative forecast errors. In deterministic forecast, Pangu-Weather shows great advantages for short to medium-range forecast (i.e., forecast time ranges from one hour to one week). Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast (e.g., tropical cyclone tracking) and large-member ensemble forecast in real-time. Pangu-Weather not only ends the debate on whether AI-based methods can surpass conventional NWP methods, but also reveals novel directions for improving deep learning weather forecast systems.
translated by 谷歌翻译
部分微分方程(PDE)参见在科学和工程中的广泛使用,以将物理过程的模拟描述为标量和向量场随着时间的推移相互作用和协调。由于其标准解决方案方法的计算昂贵性质,神经PDE代理已成为加速这些模拟的积极研究主题。但是,当前的方法并未明确考虑不同字段及其内部组件之间的关系,这些关系通常是相关的。查看此类相关场的时间演变通过多活动场的镜头,使我们能够克服这些局限性。多胎场由标量,矢量以及高阶组成部分组成,例如双分数和三分分射线。 Clifford代数可以描述它们的代数特性,例如乘法,加法和其他算术操作。据我们所知,本文介绍了此类多人表示的首次使用以及Clifford的卷积和Clifford Fourier在深度学习的背景下的转换。由此产生的Clifford神经层普遍适用,并将在流体动力学,天气预报和一般物理系统的建模领域中直接使用。我们通过经验评估克利福德神经层的好处,通过在二维Navier-Stokes和天气建模任务以及三维Maxwell方程式上取代其Clifford对应物中常见的神经PDE代理中的卷积和傅立叶操作。克利福德神经层始终提高测试神经PDE代理的概括能力。
translated by 谷歌翻译
使用计算流体动力学(CFD)方法近似风流可能是耗时的。创建用于在观察风流量变化的同时以交互式设计原型的工具需要更简单的模型来模拟更快。代替运行数值近似导致的详细计算,深度学习中的数据驱动方法可能能够在一小部分中提供类似的结果。这项工作将使用CFD计算到计算3D流场的问题,以在建筑占地面积上使用CFD到基于2D图像到图像转换的问题,以预测行人高度水平的流场。我们调查使用生成的对冲网络(GAN),例如PIX2PIX [1]和CYCREGAN [2]代表各种域中的图像到图像转换任务以及U-Net AutoEncoder [ 3]。模型可以以数据驱动的方式学习数据集的基础分布,我们认为可以帮助模型从CFD中了解底层雷诺平均的Navier-Stokes(RANS)方程。我们在具有且没有高度信息的各种三维诈唬型建筑物上进行新型模拟数据集。此外,我们为生成的图像提供了广泛的定性和定量评估,以选择模型,并将其性能与CFD传递的模拟进行比较。然后,我们通过提出用于在不同架构上注入这种信息的一般框架,将位置数据添加到输入可以产生更准确的结果。此外,我们表明模型通过应用注意机制和光谱归一化来改善,以便于稳定训练。
translated by 谷歌翻译