深度学习的最新进展使神经网络(NNS)能够在许多应用中成功地取代传统的数控求解器,从而实现令人印象深刻的计算收益。一个这样的应用是时域模拟,这对于许多工程系统的设计,分析和操作是必不可少的。模拟基于牛顿的求解器的动态系统是一种计算繁忙的任务,因为它需要在每个时间步骤解决差分和代数方程的参数化系统的解决方案。已经显示了各种基于NN的方法,以成功地近似于数值溶剂计算的轨迹。但是,以前的一些工程已经使用NNS来模拟数值求解器本身。为了快速加速时域模拟速度的表达目的,本文提出并探索了两个互补的替代数字溶剂。首先,我们使用NN以模仿由逆雅加诺在单个牛顿步骤中提供的线性变换。使用此过程,我们评估并将基于物理的残余错误评估并将基于NN映射的确切,物理的残留错误项目进行评估并将其留下物理为“循环”中的“循环”。所得到的工具称为物理投影的神经 - 牛顿求解器(Prenn),能够在观察到的速度下实现极高的数值准确度,其比基于牛顿的求解器更快地高达31%。在第二种方法中,我们将牛顿求解器在隐式跳动-Kutta积分器的核心上模拟,作为一个契约地图,迭代地寻求时域轨迹的一个固定点。相关的复发性NN仿真工具被称为合同神经牛顿求解器(Conns),嵌入有训练约束(通过CVXPY层),该训练约束(通过CVXPY层),保证NN提供的映射满足BANACH定点定理。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
Relying on recent research results on Neural ODEs, this paper presents a methodology for the design of state observers for nonlinear systems based on Neural ODEs, learning Luenberger-like observers and their nonlinear extension (Kazantzis-Kravaris-Luenberger (KKL) observers) for systems with partially-known nonlinear dynamics and fully unknown nonlinear dynamics, respectively. In particular, for tuneable KKL observers, the relationship between the design of the observer and its trade-off between convergence speed and robustness is analysed and used as a basis for improving the robustness of the learning-based observer in training. We illustrate the advantages of this approach in numerical simulations.
translated by 谷歌翻译
我们探讨了使用物理知识的神经网络急剧加速管理动力系统动态的常用代数方程的解决方案。在暂时稳定性评估方面,传统应用的方法要么携带显着的计算负担,需要模型简化,或使用过于保守的代理模型。传统的神经网络可以规避这些限制,而是面临着高质量训练数据集的高需求,而他们忽略了潜在的控制方程。物理知识的神经网络是不同的:它们将电力系统差分代数方程直接纳入神经网络培训,并大大降低了对训练数据的需求。本文深入潜入物理知识神经网络的电力系统瞬态稳定性评估的性能。介绍一种新的神经网络培训程序,以促进彻底的比较,我们探讨了物理知识的神经网络如何与传统的差分代数求解器和经典神经网络在计算时间,数据要求和预测准确性方面比较。我们说明了昆医生的两国系统的调查结果,并评估了物理知识的神经网络的机会和挑战,用作瞬态稳定性分析工具,突出了进一步开发这种方法的可能途径。
translated by 谷歌翻译
我们提出了一种基于物理知识的随机投影神经网络的数值方法,用于解决常微分方程(ODES)的初始值问题(IVPS)的解决方案,重点是僵硬的问题。我们使用具有径向基函数的单个隐藏层来解决一个极端学习机,其具有宽度均匀分布的随机变量,而输入和隐藏层之间的权重的值设置为等于1。通过构造非线性代数方程的系统来获得IVPS的数值解决方案,该系统由高斯-Nythto方法通过Gauss-Newton方法解决了输出权重,以调整集成时间间隔的简单自适应方案。为了评估其性能,我们应用了四个基准僵硬IVPS解决方案的提议方法,即预热罗宾逊,梵德,罗伯和雇用问题。我们的方法与基于Dormand-Prince对的自适应跳动-Kutta方法进行比较,以及基于数值差分公式的可变步骤可变序列多步解算器,如\ texttt {ode45}和\ texttt {ode15s}所实现的MATLAB功能分别。我们表明所提出的方案产生良好的近似精度,从而优于\ texttt {ode45}和\ texttt {ode15s},尤其是在出现陡峭梯度的情况下。此外,我们的方法的计算时间与两种Matlab溶剂的计算时间用于实际目的。
translated by 谷歌翻译
我们介绍了两个块坐标下降算法,以解决使用普通微分方程(ODE)作为动态约束的优化问题。该算法无需实施直接或伴随的灵敏度分析方法来评估损失功能梯度。它们是由对原始问题重新制作的重新制作,作为与平等约束的等效优化问题。该算法自然遵循旨在根据ODE求解器恢复梯度定位算法的步骤,该算法明确解释了ODE溶液的灵敏度。在我们的第一个提出的算法中,我们避免通过将ODE求解器集成为隐式约束序列来明确求解ODE。在我们的第二个算法中,我们使用ODE求解器重置ODE解决方案,但没有直接使用伴随灵敏度分析方法。这两种算法都接受微型批量实施,并从基于GPU的并行化中显示出显着的效率优势。当应用于学习Cucker-Smale模型的参数时,我们演示了该算法的性能。将算法与基于具有敏感性分析能力的ODE求解器的梯度下降算法进行比较,使用Pytorch和JAX实现,具有各种状态数量的敏感性分析能力。实验结果表明,所提出的算法至少比Pytorch实现快4倍,并且比JAX实现快至少16倍。对于大版本的Cucker-Smale模型,JAX实现的速度比基于灵敏度分析的实现快数千倍。此外,我们的算法在培训和测试数据上都会产生更准确的结果。对于实施实时参数估计(例如诊断算法)的算法,计算效率的这种提高至关重要。
translated by 谷歌翻译
对应用机器学习来研究动态系统有一波兴趣。特别地,已经应用神经网络来解决运动方程,因此追踪系统的演变。与神经网络和机器学习的其他应用相反,动态系统 - 根据其潜在的对称 - 具有诸如能量,动量和角动量的不变性。传统的数值迭代方法通常违反这些保护法,在时间上传播误差,并降低方法的可预测性。我们介绍了一个汉密尔顿神经网络,用于解决控制动态系统的微分方程。这种无监督的模型是学习解决方案,可以相同地满足哈密尔顿方程,因此哈密尔顿方程式满足。一旦优化了,所提出的架构被认为是一种杂项单元,因为引入了高效的参数的解决方案。另外,通过共享网络参数并选择适当的激活函数的选择大大提高了网络的可预测性。派生错误分析,并指出数值误差取决于整体网络性能。然后采用辛结构来解决非线性振荡器的方程和混沌HENON-HENEL动态系统。在两个系统中,杂项欧拉集成商需要两个订单比HAMILTONIAN网络更多的评估点,以便在预测的相空间轨迹中获得相同的数值误差顺序。
translated by 谷歌翻译
Neural ordinary differential equations (neural ODEs) have emerged as a novel network architecture that bridges dynamical systems and deep learning. However, the gradient obtained with the continuous adjoint method in the vanilla neural ODE is not reverse-accurate. Other approaches suffer either from an excessive memory requirement due to deep computational graphs or from limited choices for the time integration scheme, hampering their application to large-scale complex dynamical systems. To achieve accurate gradients without compromising memory efficiency and flexibility, we present a new neural ODE framework, PNODE, based on high-level discrete adjoint algorithmic differentiation. By leveraging discrete adjoint time integrators and advanced checkpointing strategies tailored for these integrators, PNODE can provide a balance between memory and computational costs, while computing the gradients consistently and accurately. We provide an open-source implementation based on PyTorch and PETSc, one of the most commonly used portable, scalable scientific computing libraries. We demonstrate the performance through extensive numerical experiments on image classification and continuous normalizing flow problems. We show that PNODE achieves the highest memory efficiency when compared with other reverse-accurate methods. On the image classification problems, PNODE is up to two times faster than the vanilla neural ODE and up to 2.3 times faster than the best existing reverse-accurate method. We also show that PNODE enables the use of the implicit time integration methods that are needed for stiff dynamical systems.
translated by 谷歌翻译
在本文中,我们为通过深神经网络参数参数的离散时间动力学系统的消散性和局部渐近稳定提供了足够的条件。我们利用神经网络作为点式仿射图的表示,从而揭示其本地线性操作员并使其可以通过经典的系统分析和设计方法访问。这使我们能够通过评估其耗散性并估算其固定点和状态空间分区来“打开神经动力学系统行为的黑匣子”。我们将这些局部线性运算符的规范与耗散系统中存储的能量的规范联系起来,其供应率由其总偏差项表示。从经验上讲,我们分析了这些局部线性运算符的动力学行为和特征值光谱的差异,具有不同的权重,激活函数,偏置项和深度。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
深度学习方法的应用加快了挑战性电流问题的分辨率,最近显示出令人鼓舞的结果。但是,电力系统动力学不是快照,稳态操作。必须考虑这些动力学,以确保这些模型提供的最佳解决方案遵守实用的动力约束,避免频率波动和网格不稳定性。不幸的是,由于其高计算成本,基于普通或部分微分方程的动态系统模型通常不适合在控制或状态估计中直接应用。为了应对这些挑战,本文介绍了一种机器学习方法,以近乎实时近似电力系统动态的行为。该拟议的框架基于梯度增强的物理知识的神经网络(GPINNS),并编码有关电源系统的基本物理定律。拟议的GPINN的关键特征是它的训练能力而无需生成昂贵的培训数据。该论文说明了在单机无限总线系统中提出的方法在预测转子角度和频率的前进和反向问题中的潜力,以及不确定的参数,例如惯性和阻尼,以展示其在一系列电力系统应用中的潜力。
translated by 谷歌翻译
物理知识的神经网络(PINNS)最近由于解决前进和反向问题的能力而受到了很多关注。为了训练与PINN相关的深层神经网络,通常会使用不同损失项的加权总和构建总损耗函数,然后尝试将其最小化。这种方法通常会成为解决刚性方程式的问题,因为它不能考虑自适应增量。许多研究报告说,PINN的性能不佳及其在模拟僵硬的普通差分条件(ODE)条件下模拟僵硬的化学活动问题方面的挑战。研究表明,刚度是PINN在模拟刚性动力学系统中失败的主要原因。在这里,我们通过提出减少损失函数的弱形式来解决这个问题,这导致了新的PINN结构(进一步称为还原Pinn),该结构利用降低的集成方法来使Pinn能够求解僵硬的化学动力学。所提出的还原细菌可以应用于涉及僵硬动力学的各种反应扩散系统。为此,我们将初始价值问题(IVP)转换为它们的等效积分形式,并使用物理知识的神经网络求解所得的积分方程。在我们派生的基于积分的优化过程中,只有一个术语,而没有明确合并与普通微分方程(ODE)和初始条件(ICS)相关的损失项。为了说明减少细菌的功能,我们用它来模拟多个僵硬/轻度的二阶频率。我们表明,还原的Pinn可准确捕获刚性标量颂歌的溶液。我们还针对线性ODES的硬质系统验证了还原的Pinn。
translated by 谷歌翻译
Deep Markov Models(DMM)是Markov模型的可扩展和表达概括的生成模型,用于表示,学习和推理问题。但是,这些模型的基本随机稳定性保证尚未得到彻底调查。在本文中,我们提供了在动态系统的背景下定义的DMM随机稳定性的充分条件,并提出了一种基于深神经网络建模的概率地图收缩的稳定性分析方法。我们在具有高斯分布的DMMS的稳定性和整体动态行为的稳定性和整体动态行为之间建立了与高斯分布的稳定性和总体动态行为之间的连接。基于该理论,我们提出了一些具有保证稳定性的受约束DMM的实用方法。我们通过使用所提出的稳定性约束,通过直观的数值实验凭证证实我们的理论结果。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
Non-equilibrium chemistry is a key process in the study of the InterStellar Medium (ISM), in particular the formation of molecular clouds and thus stars. However, computationally it is among the most difficult tasks to include in astrophysical simulations, because of the typically high (>40) number of reactions, the short evolutionary timescales (about $10^4$ times less than the ISM dynamical time) and the characteristic non-linearity and stiffness of the associated Ordinary Differential Equations system (ODEs). In this proof of concept work, we show that Physics Informed Neural Networks (PINN) are a viable alternative to traditional ODE time integrators for stiff thermo-chemical systems, i.e. up to molecular hydrogen formation (9 species and 46 reactions). Testing different chemical networks in a wide range of densities ($-2< \log n/{\rm cm}^{-3}< 3$) and temperatures ($1 < \log T/{\rm K}< 5$), we find that a basic architecture can give a comfortable convergence only for simplified chemical systems: to properly capture the sudden chemical and thermal variations a Deep Galerkin Method is needed. Once trained ($\sim 10^3$ GPUhr), the PINN well reproduces the strong non-linear nature of the solutions (errors $\lesssim 10\%$) and can give speed-ups up to a factor of $\sim 200$ with respect to traditional ODE solvers. Further, the latter have completion times that vary by about $\sim 30\%$ for different initial $n$ and $T$, while the PINN method gives negligible variations. Both the speed-up and the potential improvement in load balancing imply that PINN-powered simulations are a very palatable way to solve complex chemical calculation in astrophysical and cosmological problems.
translated by 谷歌翻译
影响模型预测控制(MPC)策略的神经网络(NN)近似的常见问题是缺乏分析工具来评估基于NN的控制器的动作下闭环系统的稳定性。我们介绍了一种通用过程来量化这种控制器的性能,或者设计具有整流的线性单元(Relus)的最小复杂性NN,其保留给定MPC方案的理想性质。通过量化基于NN和基于MPC的状态到输入映射之间的近似误差,我们首先建立适当的条件,涉及两个关键量,最坏情况误差和嘴唇截止恒定,保证闭环系统的稳定性。然后,我们开发了一个离线,混合整数的基于优化的方法,以确切地计算这些数量。这些技术共同提供足以认证MPC控制法的基于Relu的近似的稳定性和性能的条件。
translated by 谷歌翻译
在概述中,引入了通用数学对象(映射),并解释了其与模型物理参数化的关系。引入了可用于模拟和/或近似映射的机器学习(ML)工具。ML的应用在模拟现有参数化,开发新的参数化,确保物理约束和控制开发应用程序的准确性。讨论了一些允许开发人员超越标准参数化范式的ML方法。
translated by 谷歌翻译
在广泛的应用程序中,从观察到的数据中识别隐藏的动态是一项重大且具有挑战性的任务。最近,线性多步法方法(LMM)和深度学习的结合已成功地用于发现动力学,而对这种方法进行完整的收敛分析仍在开发中。在这项工作中,我们考虑了基于网络的深度LMM,以发现动态。我们使用深网的近似属性提出了这些方法的错误估计。它指出,对于某些LMMS的家庭,$ \ ell^2 $网格错误由$ O(H^p)$的总和和网络近似错误,其中$ h $是时间步长和$P $是本地截断错误顺序。提供了几个物理相关示例的数值结果,以证明我们的理论。
translated by 谷歌翻译