在线仇恨是许多社交媒体平台的日益关注。为解决此问题,不同的社交媒体平台为此类内容引入了审核策略。他们还聘请了可以检查职位违反审议政策的职位并采取适当行动。辱骂语言研究领域的院士也进行各种研究以更好地检测此类内容。虽然在英语中有广泛的辱骂语言检测,但在这场火灾中,在印度,乌尔都语等低资源语言中有一个滥用语言检测的空格。在URDU中提出滥用语言检测数据集以及威胁性语言检测。在本文中,我们探索了XGBoost,LGBM,基于M-BERT的M-BERT模型的多种机器学习模型,用于基于共享任务的URDU滥用和威胁的内容检测。我们观察了在阿拉伯语中滥用语言数据集的变压器模型有助于获得最佳性能。我们的模型首先是滥用和威胁性的内容检测,分别使用0.88和0.54的F1Scoreof。
translated by 谷歌翻译
仇恨言论被认为是目前轰炸在线社交媒体的主要问题之一。已经显示重复和重复的仇恨言论,为目标用户创造生理效应。因此,应在这些平台上解决其所有形式的仇恨言论,以保持健康。在本文中,我们探讨了在火灾2021的英语和印度 - 雅典语言中检测仇恨语音和冒犯内容的几个基于变压器的机器学习模型。我们探索了MBBERT,XLMR-LARG,XLMR-Base等多种型号“超级马里奥”。我们的型号在Code-Mixed数据集(宏F1:0.7107)中进行了第二个位置,在印地语两班分类(宏F1:0.7797)中,英语四类四级别(宏F1:0.8006)和英语中的第4位两级类别(宏F1:0.6447)。
translated by 谷歌翻译
随着社交媒体平台影响的增长,滥用的影响变得越来越有影响力。自动检测威胁和滥用语言的重要性不能高估。但是,大多数现有的研究和最先进的方法都以英语为目标语言,对低资产品语言的工作有限。在本文中,我们介绍了乌尔都语的两项滥用和威胁性语言检测的任务,该任务在全球范围内拥有超过1.7亿扬声器。两者都被视为二进制分类任务,其中需要参与系统将乌尔都语中的推文分类为两个类别,即:(i)第一个任务的滥用和不滥用,以及(ii)第二次威胁和不威胁。我们提供两个手动注释的数据集,其中包含标有(i)滥用和非虐待的推文,以及(ii)威胁和无威胁。滥用数据集在火车零件中包含2400个注释的推文,测试部分中包含1100个注释的推文。威胁数据集在火车部分中包含6000个注释的推文,测试部分中包含3950个注释的推文。我们还为这两个任务提供了逻辑回归和基于BERT的基线分类器。在这项共同的任务中,来自六个国家的21个团队注册参加了参与(印度,巴基斯坦,中国,马来西亚,阿拉伯联合酋长国和台湾),有10个团队提交了子任务A的奔跑,这是虐待语言检测,9个团队提交了他们的奔跑对于正在威胁语言检测的子任务B,七个团队提交了技术报告。最佳性能系统达到子任务A的F1得分值为0.880,子任务为0.545。对于两个子任务,基于M-Bert的变压器模型都表现出最佳性能。
translated by 谷歌翻译
仇恨语音在线的检测已成为一项重要的任务,因为伤害,淫秽和侮辱性内容等冒犯性语言可能会危害边缘化的人或团体。本文介绍了Indo-European语言中的仇恨语音和冒犯内容识别的共同任务任务1A和1B的任务1A和1B的实验和结果。在整个竞争中,对各种子特派团评估了不同的自然语言处理模型的成功。我们通过竞争对手基于单词和字符级别的复发神经网络测试了不同的模型,并通过竞争对手基于提供的数据集进行了学习方法。在已经用于实验的测试模型中,基于转移学习的模型在两个子任务中获得了最佳结果。
translated by 谷歌翻译
Automated offensive language detection is essential in combating the spread of hate speech, particularly in social media. This paper describes our work on Offensive Language Identification in low resource Indic language Marathi. The problem is formulated as a text classification task to identify a tweet as offensive or non-offensive. We evaluate different mono-lingual and multi-lingual BERT models on this classification task, focusing on BERT models pre-trained with social media datasets. We compare the performance of MuRIL, MahaTweetBERT, MahaTweetBERT-Hateful, and MahaBERT on the HASOC 2022 test set. We also explore external data augmentation from other existing Marathi hate speech corpus HASOC 2021 and L3Cube-MahaHate. The MahaTweetBERT, a BERT model, pre-trained on Marathi tweets when fine-tuned on the combined dataset (HASOC 2021 + HASOC 2022 + MahaHate), outperforms all models with an F1 score of 98.43 on the HASOC 2022 test set. With this, we also provide a new state-of-the-art result on HASOC 2022 / MOLD v2 test set.
translated by 谷歌翻译
情绪分析是最基本的NLP任务,用于确定文本数据的极性。在多语言文本领域也有很多工作。仍然讨厌和令人反感的语音检测面临着挑战,这是由于数据的可用性不足,特别是印度和马拉地赛等印度语言。在这项工作中,我们考虑了印地语和马拉地养文本的仇恨和令人反感的语音检测。使用艺术的深度学习方法的状态制定了该问题作为文本分类任务。我们探讨了CNN,LSTM等不同的深度学习架构,以及多语言伯爵,烟草和单晶罗伯塔等伯特的变化。基于CNN和LSTM的基本模型将使用快文文本嵌入式增强。我们使用HASOC 2021 HINDI和MARATHI讨论语音数据集来比较这些算法。 Marathi DataSet由二进制标签和后印度数据集组成,包括二进制和更精细的粗糙标签。我们表明,基于变压器的模型表现了最佳甚至基本型号以及FastText Embeddings的基本模型具有竞争性能。此外,通过普通的超参数调谐,基本模型比细粒度的Hindi数据集上的基于BERT的模型更好。
translated by 谷歌翻译
仇恨言论等攻击性内容的广泛构成了越来越多的社会问题。 AI工具是支持在线平台的审核过程所必需的。为了评估这些识别工具,需要与不同语言的数据集进行连续实验。 HASOC轨道(仇恨语音和冒犯性内容识别)专用于为此目的开发基准数据。本文介绍了英语,印地语和马拉地赛的Hasoc Subtrack。数据集由Twitter组装。此子系统有两个子任务。任务A是为所有三种语言提供的二进制分类问题(仇恨而非冒犯)。任务B是三个课程(仇恨)仇恨言论,令人攻击和亵渎为英语和印地语提供的细粒度分类问题。总体而言,652名队伍提交了652次。任务A最佳分类算法的性能分别为Marathi,印地语和英语的0.91,0.78和0.83尺寸。此概述介绍了任务和数据开发以及详细结果。提交竞争的系统应用了各种技术。最好的表演算法主要是变压器架构的变种。
translated by 谷歌翻译
为了解决检测到令人反感的评论/帖子的难题,这些评论/帖子具有很多非正式的,非结构化,错误的和码混合,我们在本研究论文中介绍了两种发明方法。社交媒体平台上的攻击性评论/帖子,可以影响个人,团体或未成年人。为了对两个受欢迎的Dravidian语言,泰米尔和马拉雅拉姆分类,作为哈索克的一部分 - Dravidiancodemix Fire 2021共享任务,我们采用了两个基于变压器的原型,该原型成功地站在前8名以获得所有任务。可以查看和使用我们方法的代码。
translated by 谷歌翻译
在大量人员中,在线社交媒体(OSMS)消费的广泛上升构成了遏制这些平台上仇恨内容的传播的关键问题。随着多种语言的效果越来越多,检测和表征仇恨的任务变得更加复杂。代码混合文本的微妙变化以及切换脚本仅增加了复杂性。本文介绍了哈索克2021多语种推特仇恨语音检测挑战的解决方案,由Team Precog IIIT Hyderabad。我们采用基于多语言变压器的方法,并为所有6个子任务描述了我们的架构作为挑战的一部分。在参加所有子特设券的6支球队中,我们的提交总体排名第3。
translated by 谷歌翻译
通过匿名和可访问性,社交媒体平台促进了仇恨言论的扩散,提示在开发自动方法以识别这些文本时提高研究。本文探讨了使用各种深度神经网络模型架构(如长短期内存(LSTM)和卷积神经网络(CNN)的文本中性别歧视分类。这些网络与来自变压器(BERT)和Distilbert模型的双向编码器表示形式的传输学习一起使用,以及数据增强,以在社交中的性别歧视识别中对推文和GAB的数据集进行二进制和多种性别歧视分类Iberlef 2021中的网络(存在)任务。看到模型与竞争对手的比较,使用BERT和多滤波器CNN模型进行了最佳性能。数据增强进一步提高了多级分类任务的结果。本文还探讨了模型所做的错误,并讨论了由于标签的主观性和社交媒体中使用的自然语言的复杂性而自动对性别歧视的难度。
translated by 谷歌翻译
在过去的十年中,我们看到了社交媒体平台推动的在线内容中的指数增长。该规模的数据生成具有难以克服的攻击内容的警告。通过多种方式(图像,语言等),代码混合语言等,通过使用识别冒犯内容的复杂性加剧了。此外,即使我们仔细采样和注释令人反感的内容,也将始终存在攻击性VS非冒犯内容的显着类别不平衡。在本文中,我们介绍了一种基于新的Code-Mixing指数(CMI)的焦点损失,其避免了两个挑战(1)代码混合语言(2)类别不平衡问题,用于Dravidian语言冒犯检测。我们还通过基于余弦的分类器更换传统的小点产品类分类器,这导致性能提升。此外,我们使用多语言模型,帮助传输特征在跨语言中学到的,以有效地使用低资源语言。同样重要的是要注意我们的模型处理混合脚本的实例(例如,说拉丁和Dravidian - 泰米尔脚本脚本的使用)也是如此。我们的模型可以在低资源,类别不平衡,多语言和代码混合设置中处理令人反感的语言检测。
translated by 谷歌翻译
在最近的过去,社交媒体平台帮助人们连接和沟通到更广泛的受众。但这也导致了网络欺凌的激烈增加。要检测和遏制仇恨言论,以保持社交媒体平台的理智。此外,在这些平台上经常使用包含多种语言的代码混合文本。因此,我们提出了从刮擦Twitter的代码混合文本中的仇恨语音检测自动化技术。我们专注于代码混合英语 - 印地文文本和基于变压器的方法。虽然常规方法独立分析了文本,但我们还以父推文的形式使用内容文本。我们尝试在单编码器和双编码器设置中评估多语言BERT和ANDIP-BERT的性能。第一种方法是使用分隔符令牌连接目标文本和上下文文本,并从BERT模型获取单个表示。第二种方法独立地使用双BERT编码器独立地编码两个文本,并且对应的表示平均。我们表明使用独立表示的双编码器方法产生更好的性能。我们还采用了简单的集合方法来进一步提高性能。使用这些方法,我们在HASOC 2021CCL代码混合数据集上报告了最佳F1分数为73.07%。
translated by 谷歌翻译
随着移动计算和网络技术的快速增长,令人反感的语言在社交网络平台上变得更加普遍。由于本地语言的令人反感语言识别对于中等社交媒体内容至关重要,因此在本文中,我们使用三种Dravidian语言,即Malayalam,Tamil和Kannada,这些语言遭到资源。我们在EACL 2021的Fire 2020- Hasoc-DravidiancodeMix和Dravidianlangtech提供了一个评估任务,旨在提供一个比较不同方法对此问题的框架。本文介绍了数据创建,定义任务,列出参与系统,并讨论各种方法。
translated by 谷歌翻译
讽刺可以被定义为说或写讽刺与一个人真正想表达的相反,通常是为了侮辱,刺激或娱乐某人。由于文本数据中讽刺性的性质晦涩难懂,因此检测到情感分析研究社区的困难和非常感兴趣。尽管讽刺检测的研究跨越了十多年,但最近已经取得了一些重大进步,包括在多模式环境中采用了无监督的预训练的预训练的变压器,并整合了环境以识别讽刺。在这项研究中,我们旨在简要概述英语计算讽刺研究的最新进步和趋势。我们描述了与讽刺有关的相关数据集,方法,趋势,问题,挑战和任务,这些数据集,趋势,问题,挑战和任务是无法检测到的。我们的研究提供了讽刺数据集,讽刺特征及其提取方法以及各种方法的性能分析,这些表可以帮助相关领域的研究人员了解当前的讽刺检测中最新实践。
translated by 谷歌翻译
The widespread of offensive content online, such as hate speech and cyber-bullying, is a global phenomenon. This has sparked interest in the artificial intelligence (AI) and natural language processing (NLP) communities, motivating the development of various systems trained to detect potentially harmful content automatically. These systems require annotated datasets to train the machine learning (ML) models. However, with a few notable exceptions, most datasets on this topic have dealt with English and a few other high-resource languages. As a result, the research in offensive language identification has been limited to these languages. This paper addresses this gap by tackling offensive language identification in Sinhala, a low-resource Indo-Aryan language spoken by over 17 million people in Sri Lanka. We introduce the Sinhala Offensive Language Dataset (SOLD) and present multiple experiments on this dataset. SOLD is a manually annotated dataset containing 10,000 posts from Twitter annotated as offensive and not offensive at both sentence-level and token-level, improving the explainability of the ML models. SOLD is the first large publicly available offensive language dataset compiled for Sinhala. We also introduce SemiSOLD, a larger dataset containing more than 145,000 Sinhala tweets, annotated following a semi-supervised approach.
translated by 谷歌翻译
自2020年初以来,Covid-19-19造成了全球重大影响。这给社会带来了很多困惑,尤其是由于错误信息通过社交媒体传播。尽管已经有几项与在社交媒体数据中发现错误信息有关的研究,但大多数研究都集中在英语数据集上。印度尼西亚的COVID-19错误信息检测的研究仍然很少。因此,通过这项研究,我们收集和注释印尼语的数据集,并通过考虑该推文的相关性来构建用于检测COVID-19错误信息的预测模型。数据集构造是由一组注释者进行的,他们标记了推文数据的相关性和错误信息。在这项研究中,我们使用印度培训预培训的语言模型提出了两阶段分类器模型,以进行推文错误信息检测任务。我们还尝试了其他几种基线模型进行文本分类。实验结果表明,对于相关性预测,BERT序列分类器的组合和用于错误信息检测的BI-LSTM的组合优于其他机器学习模型,精度为87.02%。总体而言,BERT利用率有助于大多数预测模型的更高性能。我们发布了高质量的Covid-19错误信息推文语料库,用高通道一致性表示。
translated by 谷歌翻译
我们介绍了泰国抑郁症的第一个公开的有用的语料库。我们的语料库由几个在线博客中的抑郁症的专家验证案例编制。我们试验两种不同的基于LSTM的模型和两种不同的基于伯特模型。我们在检测抑郁症时达到77.53 \%的准确性。这为同一语料库的未来研究人员建立了一个很好的基准。此外,我们确定需要在比维基百科更多种多样的语料库培训的泰国嵌入。我们的语料库,代码和培训的型号在Zenodo上公开发布。
translated by 谷歌翻译
在本文中,我们介绍了TweetNLP,这是社交媒体中自然语言处理(NLP)的集成平台。TweetNLP支持一套多样化的NLP任务,包括诸如情感分析和命名实体识别的通用重点领域,以及社交媒体特定的任务,例如表情符号预测和进攻性语言识别。特定于任务的系统由专门用于社交媒体文本的合理大小的基于变压器的语言模型(尤其是Twitter)提供动力,无需专用硬件或云服务即可运行。TweetNLP的主要贡献是:(1)使用适合社会领域的各种特定于任务的模型,用于支持社交媒体分析的现代工具包的集成python库;(2)使用我们的模型进行无编码实验的交互式在线演示;(3)涵盖各种典型社交媒体应用的教程。
translated by 谷歌翻译
信息通过社交媒体平台的传播可以创造可能对弱势社区的环境和社会中某些群体的沉默。为了减轻此类情况,已经开发了几种模型来检测仇恨和冒犯性言论。由于在社交媒体平台中检测仇恨和冒犯性演讲可能会错误地将个人排除在社交媒体平台之外,从而减少信任,因此有必要创建可解释和可解释的模型。因此,我们基于在Twitter数据上培训的XGBOOST算法建立了一个可解释且可解释的高性能模型。对于不平衡的Twitter数据,XGBoost在仇恨言语检测上的表现优于LSTM,Autogluon和ULMFIT模型,F1得分为0.75,而0.38和0.37分别为0.37和0.38。当我们将数据放到三个单独的类别的大约5000个推文中时,XGBoost的性能优于LSTM,Autogluon和Ulmfit;仇恨言语检测的F1分别为0.79和0.69、0.77和0.66。 XGBOOST在下采样版本中的进攻性语音检测中的F1得分分别为0.83和0.88、0.82和0.79,XGBOOST的表现也比LSTM,Autogluon和Ulmfit更好。我们在XGBoost模型的输出上使用Shapley添加说明(SHAP),以使其与Black-Box模型相比,与LSTM,Autogluon和Ulmfit相比,它可以解释和解释。
translated by 谷歌翻译
Hope is characterized as openness of spirit toward the future, a desire, expectation, and wish for something to happen or to be true that remarkably affects human's state of mind, emotions, behaviors, and decisions. Hope is usually associated with concepts of desired expectations and possibility/probability concerning the future. Despite its importance, hope has rarely been studied as a social media analysis task. This paper presents a hope speech dataset that classifies each tweet first into "Hope" and "Not Hope", then into three fine-grained hope categories: "Generalized Hope", "Realistic Hope", and "Unrealistic Hope" (along with "Not Hope"). English tweets in the first half of 2022 were collected to build this dataset. Furthermore, we describe our annotation process and guidelines in detail and discuss the challenges of classifying hope and the limitations of the existing hope speech detection corpora. In addition, we reported several baselines based on different learning approaches, such as traditional machine learning, deep learning, and transformers, to benchmark our dataset. We evaluated our baselines using weighted-averaged and macro-averaged F1-scores. Observations show that a strict process for annotator selection and detailed annotation guidelines enhanced the dataset's quality. This strict annotation process resulted in promising performance for simple machine learning classifiers with only bi-grams; however, binary and multiclass hope speech detection results reveal that contextual embedding models have higher performance in this dataset.
translated by 谷歌翻译