少量对象检测(FSOD)是计算机视觉中快速生长的领域。它包括查找给定的一组类的所有出现,只有每个类的少数注释的示例。已经提出了许多方法来解决这一挑战,其中大部分是基于注意机制。然而,各种经典对象检测框架和培训策略使方法之间的性能比较困难。特别是对于基于关注的FSOD方法,比较不同关注机制对性能的影响是费力的。本文旨在填补这种缺点。为此,提出了一种灵活的框架,以允许实施文献中可用的大部分注意技术。要正确介绍这样的框架,首先提供了对现有FSOD方法的详细审查。然后在框架内重新实现一些不同的关注机制,并与固定的所有其他参数进行比较。
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
即使在几个例子中,人类能够学会识别新物品。相比之下,培训基于深度学习的对象探测器需要大量的注释数据。为避免需求获取和注释这些大量数据,但很少拍摄的对象检测旨在从目标域中的新类别的少数对象实例中学习。在本调查中,我们在几次拍摄对象检测中概述了本领域的状态。我们根据培训方案和建筑布局分类方法。对于每种类型的方法,我们描述了一般的实现以及提高新型类别性能的概念。在适当的情况下,我们在这些概念上给出短暂的外卖,以突出最好的想法。最终,我们介绍了常用的数据集及其评估协议,并分析了报告的基准结果。因此,我们强调了评估中的共同挑战,并确定了这种新兴对象检测领域中最有前景的电流趋势。
translated by 谷歌翻译
对象检测是计算机视觉和图像处理中的基本任务。基于深度学习的对象探测器非常成功,具有丰富的标记数据。但在现实生活中,它不保证每个对象类别都有足够的标记样本进行培训。当训练数据有限时,这些大型物体探测器易于过度装备。因此,有必要将几次拍摄的学习和零射击学习引入对象检测,这可以将低镜头对象检测命名在一起。低曝光对象检测(LSOD)旨在检测来自少数甚至零标记数据的对象,其分别可以分为几次对象检测(FSOD)和零拍摄对象检测(ZSD)。本文对基于深度学习的FSOD和ZSD进行了全面的调查。首先,本调查将FSOD和ZSD的方法分类为不同的类别,并讨论了它们的利弊。其次,本调查审查了数据集设置和FSOD和ZSD的评估指标,然后分析了在这些基准上的不同方法的性能。最后,本调查讨论了FSOD和ZSD的未来挑战和有希望的方向。
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
少量对象检测(FSOD)旨在仅使用几个例子来检测对象。如何将最先进的对象探测器适应几个拍摄域保持挑战性。对象提案是现代物体探测器中的关键成分。然而,使用现有方法对于几张拍摄类生成的提案质量远远差,而不是许多拍摄类,例如,由于错误分类或不准确的空间位置而导致的少量拍摄类丢失的框。为了解决嘈杂的提案问题,我们通过联合优化几次提案生成和细粒度的少量提案分类,提出了一种新的Meta学习的FSOD模型。为了提高几张拍摄类的提议生成,我们建议学习基于轻量级的公制学习的原型匹配网络,而不是传统的简单线性对象/非目标分类器,例如,在RPN中使用。我们具有特征融合网络的非线性分类器可以提高鉴别性原型匹配和少拍摄类的提案回忆。为了提高细粒度的少量提案分类,我们提出了一种新的细节特征对准方法,以解决嘈杂的提案和少量拍摄类之间的空间未对准,从而提高了几次对象检测的性能。同时,我们学习一个单独的R-CNN检测头,用于多射击基础类,并表现出维护基础课程知识的强大性能。我们的模型在大多数射击和指标上实现了多个FSOD基准的最先进的性能。
translated by 谷歌翻译
Conventional training of a deep CNN based object detector demands a large number of bounding box annotations, which may be unavailable for rare categories. In this work we develop a few-shot object detector that can learn to detect novel objects from only a few annotated examples. Our proposed model leverages fully labeled base classes and quickly adapts to novel classes, using a meta feature learner and a reweighting module within a one-stage detection architecture. The feature learner extracts meta features that are generalizable to detect novel object classes, using training data from base classes with sufficient samples. The reweighting module transforms a few support examples from the novel classes to a global vector that indicates the importance or relevance of meta features for detecting the corresponding objects. These two modules, together with a detection prediction module, are trained end-to-end based on an episodic few-shot learning scheme and a carefully designed loss function. Through extensive experiments we demonstrate that our model outperforms well-established baselines by a large margin for few-shot object detection, on multiple datasets and settings. We also present analysis on various aspects of our proposed model, aiming to provide some inspiration for future few-shot detection works.
translated by 谷歌翻译
通过将元学习纳入基于区域的检测框架中,很少有射击对象检测经过广泛的研究。尽管取得了成功,但所述范式仍然受到几个因素的限制,例如(i)新型类别的低质量区域建议以及(ii)不同类别之间的类间相关性的过失。这种限制阻碍了基础知识的概括,以检测新型级别对象。在这项工作中,我们设计了元数据,(i)是第一个图像级的少量检测器,(ii)引入了一种新颖的类间相关元学习策略,以捕获和利用不同类别之间的相关性的相关性稳健而准确的几个射击对象检测。 meta-detr完全在图像级别工作,没有任何区域建议,这规避了普遍的几杆检测框架中不准确的建议的约束。此外,引入的相关元学习使元数据能够同时参加单个进料中的多个支持类别,从而可以捕获不同类别之间的类间相关性,从而大大降低了相似类别的错误分类并增强知识概括性参加新颖的课程。对多个射击对象检测基准进行的实验表明,所提出的元元删除优于大幅度的最先进方法。实施代码可在https://github.com/zhanggongjie/meta-detr上获得。
translated by 谷歌翻译
几乎没有射击的对象检测(FSOD)旨在对新类别的几幅图像进行分类和检测。现有的元学习方法由于结构限制而在支持和查询图像之间的功能不足。我们提出了一个层次的注意网络,该网络具有依次大的接收场,以充分利用查询和支持图像。此外,元学习不能很好地区分类别,因为它决定了支持和查询图像是否匹配。换句话说,基于度量的分类学习是无效的,因为它不直接起作用。因此,我们提出了一种称为元对抗性学习的对比学习方法,该方法直接有助于实现元学习策略的目的。最后,我们通过实现明显的利润来建立一个新的最新网络。我们的方法带来了2.3、1.0、1.3、3.4和2.4 \%\%\%AP的改进,可在可可数据集上进行1-30张对象检测。我们的代码可在以下网址找到:https://github.com/infinity7428/hanmcl
translated by 谷歌翻译
少量对象检测(FSOD)旨在使用少数示例来检测从未见过的对象。通过学习如何在查询图像和少量拍摄类示例之间进行匹配,因此可以通过学习如何匹配来实现最近的改进,使得学习模型可以概括为几滴新颖的类。然而,目前,大多数基于元学习的方法分别在查询图像区域(通常是提议)和新颖类之间执行成对匹配,因此无法考虑它们之间的多个关系。在本文中,我们使用异构图卷积网络提出了一种新颖的FSOD模型。通过具有三种不同类型的边缘的所有提议和类节点之间的有效消息,我们可以获得每个类的上下文感知提案功能和查询 - 自适应,多包子增强型原型表示,这可能有助于促进成对匹配和改进的最终决赛FSOD精度。广泛的实验结果表明,我们所提出的模型表示为QA的Qa-Netwet,优于不同拍摄和评估指标下的Pascal VOC和MSCOCO FSOD基准测试的当前最先进的方法。
translated by 谷歌翻译
很少有射击对象检测(FSOD),目的是使用很少的培训示例来检测新颖的对象,最近对社区引起了极大的研究兴趣。基于度量学习的方法已证明使用基于两分支的暹罗网络对此任务有效,并计算图像区域之间的相似性和几乎没有射击示例以进行检测。但是,在以前的工作中,两个分支之间的相互作用仅在检测头中受到限制,而将其余数百个层留在单独的特征提取中。受到有关视觉变压器和视觉变压器的最新工作的启发,我们通过将交叉转换器纳入功能骨干和检测头中,提出了一种新颖的FSOD基于跨变速器的模型(FCT)。提出了不对称批次的交叉注意,以从不同批次大小的两个分支中汇总关键信息。我们的模型可以通过引入多级交互来改善两个分支之间的几个相似性学习。对Pascal VOC和MSCOCO FSOD基准测试的全面实验证明了我们模型的有效性。
translated by 谷歌翻译
Few-shot object detection (FSOD), which aims at learning a generic detector that can adapt to unseen tasks with scarce training samples, has witnessed consistent improvement recently. However, most existing methods ignore the efficiency issues, e.g., high computational complexity and slow adaptation speed. Notably, efficiency has become an increasingly important evaluation metric for few-shot techniques due to an emerging trend toward embedded AI. To this end, we present an efficient pretrain-transfer framework (PTF) baseline with no computational increment, which achieves comparable results with previous state-of-the-art (SOTA) methods. Upon this baseline, we devise an initializer named knowledge inheritance (KI) to reliably initialize the novel weights for the box classifier, which effectively facilitates the knowledge transfer process and boosts the adaptation speed. Within the KI initializer, we propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights. Finally, our approach not only achieves the SOTA results across three public benchmarks, i.e., PASCAL VOC, COCO and LVIS, but also exhibits high efficiency with 1.8-100x faster adaptation speed against the other methods on COCO/LVIS benchmark during few-shot transfer. To our best knowledge, this is the first work to consider the efficiency problem in FSOD. We hope to motivate a trend toward powerful yet efficient few-shot technique development. The codes are publicly available at https://github.com/Ze-Yang/Efficient-FSOD.
translated by 谷歌翻译
在视觉识别任务中,很少的学习需要在很少的支持示例中学习对象类别的能力。鉴于深度学习的发展,它的重新流行主要是图像分类。这项工作着重于几片语义细分,这仍然是一个未开发的领域。最近的一些进步通常仅限于单级少量分段。在本文中,我们首先介绍了一个新颖的多通道(类)编码和解码体系结构,该体系结构有效地将多尺度查询信息和多类支持信息融合到一个查询支持嵌入中。多级分割直接在此嵌入后解码。为了获得更好的特征融合,在体系结构中提出了多层注意机制,其中包括对支持功能调制的关注和多尺度组合的注意力。最后,为了增强嵌入式空间学习,引入了一个额外的像素度量学习模块,并在输入图像的像素级嵌入式上提出了三重损失。对标准基准Pascal-5i和Coco-20i进行的广泛实验显示了我们方法对最新技术的明显好处
translated by 谷歌翻译
很少有细粒度的分类和人搜索作为独特的任务和文学作品,已经分别对待了它们。但是,仔细观察揭示了重要的相似之处:这两个任务的目标类别只能由特定的对象细节歧视;相关模型应概括为新类别,而在培训期间看不到。我们提出了一个适用于这两个任务的新型统一查询引导网络(QGN)。QGN由一个查询引导的暹罗引文和兴奋子网组成,该子网还重新进行了所有网络层的查询和画廊功能,一个查询实习的区域建议特定于特定于特定的本地化以及查询指导的相似性子网络子网本网络用于公制学习。QGN在最近的一些少数细颗粒数据集上有所改善,在幼崽上的其他技术优于大幅度。QGN还对人搜索Cuhk-Sysu和PRW数据集进行了竞争性执行,我们在其中进行了深入的分析。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
昂贵的边界盒注释限制了对象检测任务的开发。因此,有必要专注于更具挑战性的对象检测的更具挑战性的任务。它要求检测器只有几个训练样本识别新型类别的对象。如今,许多采用类似于元学习的培训方式的现有流行方法已经达到了有希望的表现,例如meta r-CNN系列。但是,支持数据仅用作类的注意,以指导每次查询图像的检测。它们彼此的相关性仍未得到解释。此外,许多最近的作品将支持数据和查询图像视为独立分支,而无需考虑它们之间的关系。为了解决这个问题,我们提出了一个动态相关性学习模型,该模型利用查询图像上所有支持图像与目标区域(ROI)之间的关系来构建动态图卷积网络(GCN)。通过使用此GCN的输出调整基本检测器的预测分布,提出的模型是一项硬辅助分类任务,该任务指导检测器隐含地改进类表示。对Pascal VOC和MS-Coco数据集进行了全面的实验。拟议的模型达到了最佳的整体性能,这表明了其学习更多广义特征的有效性。我们的代码可在https://github.com/liuweijie19980216/drl-for-fsod上找到。
translated by 谷歌翻译
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or finetuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is https://github.com/fanq15/Few-Shot-Object-Detection-Dataset.
translated by 谷歌翻译
由于元学习策略的成功,几次对象检测迅速进展。然而,现有方法中的微调阶段的要求是时间分子,并且显着阻碍了其在实时应用中的使用,例如对低功耗机器人的自主勘探。为了解决这个问题,我们展示了一个全新的架构,Airdet,它通过学习级别与支持图像的无政府主义关系没有微调。具体地,我们提出了一种支持引导的串级(SCS)特征融合网络来生成对象提案,用于拍摄聚合的全局本地关系网络(GLR),以及基于关系的基本嵌入网络(R-PEN),用于精确本土化。令人惊讶的是,在Coco和Pascal VOC数据集上进行详尽的实验,旨在达到比详尽的Fineetuned方法相当或更好的结果,达到基线的提高高达40-60%。为了我们的兴奋,Airdet在多尺度对象,尤其是小型物体上获得有利性能。此外,我们提出了来自DARPA地下挑战的实际勘探测试的评估结果,这强烈验证了机器人中AIRDET的可行性。将公开源代码,预先训练的模型以及真实世界的勘探数据。
translated by 谷歌翻译
很少有分段旨在学习一个细分模型,该模型可以推广到只有几个培训图像的新课程。在本文中,我们提出了一个交叉引用和局部全球条件网络(CRCNET),以进行几次分割。与以前仅预测查询图像掩码的作品不同,我们提出的模型同时对支持图像和查询图像进行了预测。我们的网络可以更好地在两个图像中使用交叉引用机制找到同时出现的对象,从而有助于少量分割任务。为了进一步改善功能比较,我们开发了一个局部全球条件模块,以捕获全球和本地关系。我们还开发了一个掩模修补模块,以重新完善前景区域的预测。Pascal VOC 2012,MS Coco和FSS-1000数据集的实验表明,我们的网络实现了新的最新性能。
translated by 谷歌翻译
零拍摄对象检测(ZSD),将传统检测模型扩展到检测来自Unseen类别的对象的任务,已成为计算机视觉中的新挑战。大多数现有方法通过严格的映射传输策略来解决ZSD任务,这可能导致次优ZSD结果:1)这些模型的学习过程忽略了可用的看不见的类信息,因此可以轻松地偏向所看到的类别; 2)原始视觉特征空间并不合适,缺乏歧视信息。为解决这些问题,我们开发了一种用于ZSD的新型语义引导的对比网络,命名为Contrastzsd,一种检测框架首先将对比学习机制带入零拍摄检测的领域。特别地,对比度包括两个语义导向的对比学学习子网,其分别与区域类别和区域区域对之间形成对比。成对对比度任务利用从地面真理标签和预定义的类相似性分布派生的附加监督信号。在那些明确的语义监督的指导下,模型可以了解更多关于看不见的类别的知识,以避免看到概念的偏见问题,同时优化视觉功能的数据结构,以更好地辨别更好的视觉语义对齐。广泛的实验是在ZSD,即Pascal VOC和MS Coco的两个流行基准上进行的。结果表明,我们的方法优于ZSD和广义ZSD任务的先前最先进的。
translated by 谷歌翻译