有关应答数据集和模型的研究在研究界中获得了很多关注。其中许多人释放了自己的问题应答数据集以及模型。我们在该研究领域看到了巨大的进展。本调查的目的是识别,总结和分析许多研究人员释放的现有数据集,尤其是在非英语数据集以及研究代码和评估指标等资源中。在本文中,我们审查了问题应答数据集,这些数据集可以以法语,德语,日语,中文,阿拉伯语,俄语以及多语言和交叉的问答数据集进行英语。
translated by 谷歌翻译
过去十年互联网上可用的信息和信息量增加。该数字化导致自动应答系统需要从冗余和过渡知识源中提取富有成效的信息。这些系统旨在利用自然语言理解(NLU)从此巨型知识源到用户查询中最突出的答案,从而取决于问题答案(QA)字段。问题答案涉及但不限于用户问题映射的步骤,以获取相关查询,检索相关信息,从检索到的信息等找到最佳合适的答案等。当前对深度学习模型的当前改进估计所有这些任务的令人信服的性能改进。在本综述工作中,根据问题的类型,答案类型,证据答案来源和建模方法进行分析QA场的研究方向。此细节随后是自动问题生成,相似性检测和语言的低资源可用性等领域的开放挑战。最后,提出了对可用数据集和评估措施的调查。
translated by 谷歌翻译
Multi-hop Machine reading comprehension is a challenging task with aim of answering a question based on disjoint pieces of information across the different passages. The evaluation metrics and datasets are a vital part of multi-hop MRC because it is not possible to train and evaluate models without them, also, the proposed challenges by datasets often are an important motivation for improving the existing models. Due to increasing attention to this field, it is necessary and worth reviewing them in detail. This study aims to present a comprehensive survey on recent advances in multi-hop MRC evaluation metrics and datasets. In this regard, first, the multi-hop MRC problem definition will be presented, then the evaluation metrics based on their multi-hop aspect will be investigated. Also, 15 multi-hop datasets have been reviewed in detail from 2017 to 2022, and a comprehensive analysis has been prepared at the end. Finally, open issues in this field have been discussed.
translated by 谷歌翻译
近年来,低资源机器阅读理解(MRC)取得了重大进展,模型在各种语言数据集中获得了显着性能。但是,这些模型都没有为URDU语言定制。这项工作探讨了通过将机器翻译的队伍与来自剑桥O级书籍的Wikipedia文章和Urdu RC工作表组合的人生成的样本组合了机器翻译的小队,探讨了乌尔通题的半自动创建了数据集(UQuad1.0)。 UQuad1.0是一个大型URDU数据集,用于提取机器阅读理解任务,由49K问题答案成对组成,段落和回答格式。在UQuad1.0中,通过众包的原始SquAd1.0和大约4000对的机器翻译产生45000对QA。在本研究中,我们使用了两种类型的MRC型号:基于规则的基线和基于先进的变换器的模型。但是,我们发现后者优于其他人;因此,我们已经决定专注于基于变压器的架构。使用XLMroberta和多语言伯特,我们分别获得0.66和0.63的F1得分。
translated by 谷歌翻译
We introduce a large scale MAchine Reading COmprehension dataset, which we name MS MARCO. The dataset comprises of 1,010,916 anonymized questionssampled from Bing's search query logs-each with a human generated answer and 182,669 completely human rewritten generated answers. In addition, the dataset contains 8,841,823 passages-extracted from 3,563,535 web documents retrieved by Bing-that provide the information necessary for curating the natural language answers. A question in the MS MARCO dataset may have multiple answers or no answers at all. Using this dataset, we propose three different tasks with varying levels of difficulty: (i) predict if a question is answerable given a set of context passages, and extract and synthesize the answer as a human would (ii) generate a well-formed answer (if possible) based on the context passages that can be understood with the question and passage context, and finally (iii) rank a set of retrieved passages given a question. The size of the dataset and the fact that the questions are derived from real user search queries distinguishes MS MARCO from other well-known publicly available datasets for machine reading comprehension and question-answering. We believe that the scale and the real-world nature of this dataset makes it attractive for benchmarking machine reading comprehension and question-answering models.
translated by 谷歌翻译
我们介绍了关于多语言信息访问(MIA)2022共享任务的研讨会的结果,评估了16种类型上多样性的语言中的跨语性开放回程答案(QA)系统。在此任务中,我们在14种类型上多样化的语言中调整了两个大规模的跨语性开放式质疑QA数据集,并使用了2种代表性不足的语言中的新注释的开放式QA数据:Tagalog和Tamil。四个团队提交了他们的系统。利用迭代开采的最佳系统是不同的负面示例和较大的预审慎模型达到32.2 F1,表现优于我们的基线4.5分。第二最佳系统使用实体感知的上下文化表示文档检索,并在泰米尔语(20.8 F1)方面取得了重大改进,而其他大多数系统的得分几乎为零。
translated by 谷歌翻译
一种有效的横向传输方法是在一种语言中微调在监督数据集上的双语或多语言模型,并以零拍方式在另一种语言上进行评估。在培训时间或推理时间翻译例子也是可行的替代方案。然而,存在与文献中很少有关的这些方法相关的成本。在这项工作中,我们在其有效性(例如,准确性),开发和部署成本方面分析交叉语言方法,以及推理时间的延迟。我们的三个任务的实验表明最好的交叉方法是高度任务依赖性的。最后,通过结合零射和翻译方法,我们在这项工作中使用的三个数据集中实现了最先进的。基于这些结果,我们对目标语言手动标记的培训数据有所了解。代码和翻译的数据集可在https://github.com/unicamp-dl/cross-lingsual-analysis上获得
translated by 谷歌翻译
We present TriviaQA, a challenging reading comprehension dataset containing over 650K question-answer-evidence triples. TriviaQA includes 95K questionanswer pairs authored by trivia enthusiasts and independently gathered evidence documents, six per question on average, that provide high quality distant supervision for answering the questions. We show that, in comparison to other recently introduced large-scale datasets, TriviaQA (1) has relatively complex, compositional questions, (2) has considerable syntactic and lexical variability between questions and corresponding answer-evidence sentences, and (3) requires more cross sentence reasoning to find answers. We also present two baseline algorithms: a featurebased classifier and a state-of-the-art neural network, that performs well on SQuAD reading comprehension. Neither approach comes close to human performance (23% and 40% vs. 80%), suggesting that Trivi-aQA is a challenging testbed that is worth significant future study. 1
translated by 谷歌翻译
While the NLP community is generally aware of resource disparities among languages, we lack research that quantifies the extent and types of such disparity. Prior surveys estimating the availability of resources based on the number of datasets can be misleading as dataset quality varies: many datasets are automatically induced or translated from English data. To provide a more comprehensive picture of language resources, we examine the characteristics of 156 publicly available NLP datasets. We manually annotate how they are created, including input text and label sources and tools used to build them, and what they study, tasks they address and motivations for their creation. After quantifying the qualitative NLP resource gap across languages, we discuss how to improve data collection in low-resource languages. We survey language-proficient NLP researchers and crowd workers per language, finding that their estimated availability correlates with dataset availability. Through crowdsourcing experiments, we identify strategies for collecting high-quality multilingual data on the Mechanical Turk platform. We conclude by making macro and micro-level suggestions to the NLP community and individual researchers for future multilingual data development.
translated by 谷歌翻译
Open-Domain Generative Question Answering has achieved impressive performance in English by combining document-level retrieval with answer generation. These approaches, which we refer to as GenQA, can generate complete sentences, effectively answering both factoid and non-factoid questions. In this paper, we extend GenQA to the multilingual and cross-lingual settings. For this purpose, we first introduce GenTyDiQA, an extension of the TyDiQA dataset with well-formed and complete answers for Arabic, Bengali, English, Japanese, and Russian. Based on GenTyDiQA, we design a cross-lingual generative model that produces full-sentence answers by exploiting passages written in multiple languages, including languages different from the question. Our cross-lingual generative system outperforms answer sentence selection baselines for all 5 languages and monolingual generative pipelines for three out of five languages studied.
translated by 谷歌翻译
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark 1 to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
translated by 谷歌翻译
问题答案(QA)是自然语言处理中最具挑战性的最具挑战性的问题之一(NLP)。问答(QA)系统试图为给定问题产生答案。这些答案可以从非结构化或结构化文本生成。因此,QA被认为是可以用于评估文本了解系统的重要研究区域。大量的QA研究致力于英语语言,调查最先进的技术和实现最先进的结果。然而,由于阿拉伯QA中的研究努力和缺乏大型基准数据集,在阿拉伯语问答进展中的研究努力得到了很大速度的速度。最近许多预先接受的语言模型在许多阿拉伯语NLP问题中提供了高性能。在这项工作中,我们使用四个阅读理解数据集来评估阿拉伯QA的最先进的接种变压器模型,它是阿拉伯语 - 队,ArcD,AQAD和TYDIQA-GoldP数据集。我们微调并比较了Arabertv2基础模型,ArabertV0.2大型型号和ARAElectra模型的性能。在最后,我们提供了一个分析,了解和解释某些型号获得的低绩效结果。
translated by 谷歌翻译
问题回答(QA)是信息检索和信息提取领域内的一项自然理解任务,由于基于机器阅读理解的模型的强劲发展,近年来,近年来,近年来的计算语言学和人工智能研究社区引起了很多关注。基于读者的质量检查系统是一种高级搜索引擎,可以使用机器阅读理解(MRC)技术在开放域或特定领域特定文本中找到正确的查询或问题的答案。 MRC和QA系统中的数据资源和机器学习方法的大多数进步尤其是在两种资源丰富的语言中显着开发的,例如英语和中文。像越南人这样的低资源语言见证了关于质量检查系统的稀缺研究。本文介绍了XLMRQA,这是第一个在基于Wikipedia的文本知识源(使用UIT-Viquad语料库)上使用基于变压器的读取器的越南质量检查系统,使用深​​层神经网络模型优于DRQA和BERTSERINI,优于两个可靠的QA系统分别为24.46%和6.28%。从三个系统获得的结果中,我们分析了问题类型对质量检查系统性能的影响。
translated by 谷歌翻译
问题回答(QA)是最重要的自然语言处理(NLP)任务之一。它旨在使用NLP技术根据大规模的非结构化语料库生成对给定问题的相应答案。随着深度学习的发展,正在提出越来越具有挑战性的质量检查数据集,并且许多用于解决它们的新方法也正在出现。在本文中,我们研究了在深度学习时代发布的有影响力的质量检查数据集。具体来说,我们首先引入两个最常见的质量检查任务 - 文本问题答案和视觉问题 - 分别涵盖最具代表性的数据集,然后给出质量检查研究的一些当前挑战。
translated by 谷歌翻译
The General QA field has been developing the methodology referencing the Stanford Question answering dataset (SQuAD) as the significant benchmark. However, compiling factual questions is accompanied by time- and labour-consuming annotation, limiting the training data's potential size. We present the WikiOmnia dataset, a new publicly available set of QA-pairs and corresponding Russian Wikipedia article summary sections, composed with a fully automated generative pipeline. The dataset includes every available article from Wikipedia for the Russian language. The WikiOmnia pipeline is available open-source and is also tested for creating SQuAD-formatted QA on other domains, like news texts, fiction, and social media. The resulting dataset includes two parts: raw data on the whole Russian Wikipedia (7,930,873 QA pairs with paragraphs for ruGPT-3 XL and 7,991,040 QA pairs with paragraphs for ruT5-large) and cleaned data with strict automatic verification (over 160,000 QA pairs with paragraphs for ruGPT-3 XL and over 3,400,000 QA pairs with paragraphs for ruT5-large).
translated by 谷歌翻译
In the last year, new models and methods for pretraining and transfer learning have driven striking performance improvements across a range of language understanding tasks. The GLUE benchmark, introduced a little over one year ago, offers a single-number metric that summarizes progress on a diverse set of such tasks, but performance on the benchmark has recently surpassed the level of non-expert humans, suggesting limited headroom for further research. In this paper we present SuperGLUE, a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, a software toolkit, and a public leaderboard. SuperGLUE is available at super.gluebenchmark.com.
translated by 谷歌翻译
Humans gather information through conversations involving a series of interconnected questions and answers. For machines to assist in information gathering, it is therefore essential to enable them to answer conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering systems. 1 Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational questions have challenging phenomena not present in existing reading comprehension datasets, e.g., coreference and pragmatic reasoning. We evaluate strong dialogue and reading comprehension models on CoQA. The best system obtains an F1 score of 65.4%, which is 23.4 points behind human performance (88.8%), indicating there is ample room for improvement. We present CoQA as a challenge to the community at https://stanfordnlp. github.io/coqa.
translated by 谷歌翻译
In this work, we introduce IndicXTREME, a benchmark consisting of nine diverse tasks covering 18 languages from the Indic sub-continent belonging to four different families. Across languages and tasks, IndicXTREME contains a total of 103 evaluation sets, of which 51 are new contributions to the literature. To maintain high quality, we only use human annotators to curate or translate\footnote{for IndicXParaphrase, where an automatic translation system is used, a second human verification and correction step is done.} our datasets. To the best of our knowledge, this is the first effort toward creating a standard benchmark for Indic languages that aims to test the zero-shot capabilities of pretrained language models. We also release IndicCorp v2, an updated and much larger version of IndicCorp that contains 20.9 billion tokens in 24 languages. We pretrain IndicBERT v2 on IndicCorp v2 and evaluate it on IndicXTREME to show that it outperforms existing multilingual language models such as XLM-R and MuRIL.
translated by 谷歌翻译
We present RACE, a new dataset for benchmark evaluation of methods in the reading comprehension task. Collected from the English exams for middle and high school Chinese students in the age range between 12 to 18, RACE consists of near 28,000 passages and near 100,000 questions generated by human experts (English instructors), and covers a variety of topics which are carefully designed for evaluating the students' ability in understanding and reasoning. In particular, the proportion of questions that requires reasoning is much larger in RACE than that in other benchmark datasets for reading comprehension, and there is a significant gap between the performance of the state-of-the-art models (43%) and the ceiling human performance (95%). We hope this new dataset can serve as a valuable resource for research and evaluation in machine comprehension. The dataset is freely available at http://www.cs.cmu.edu/ ˜glai1/data/race/ and the code is available at https://github.com/ qizhex/RACE_AR_baselines
translated by 谷歌翻译
Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers. We introduce HOTPOTQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems' ability to extract relevant facts and perform necessary comparison. We show that HOTPOTQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions.
translated by 谷歌翻译