通过分析多OMICS数据,许多统计机器方法最终可能会突出复杂疾病的病因的新颖特征。然而,当观察到的样品可能被对抗性腐败的异常值(例如,虚构数据分布)可能被污染时,它们对分布的一些偏差敏感。同样,统计进步落后于支持复杂多OMICS数据集成的综合数据驱动分析。我们提出了一种新颖的非线性M估计的方法,“强大的内核机器回归(Robkmr)”,提高统计机器回归的鲁棒性和虚构数据的多样性,以检查多OMIC的高阶综合效果数据集。我们地址稳健的内核中心克矩阵,以准确估计模型参数。我们还提出了一个强大的评分测试,以评估来自多OMICS数据的特征的边缘和关节凸起产品。我们将我们提出的方法应用于来自白种人女性的骨质疏松症(OP)的多OMICS数据集。实验表明,所提出的方法有效地识别了OP的相关危险因素。具有固体证据(p值= 0.00001),生物验证,基于网络的分析,因果推断和药物重新施用,所选三个三胞胎((DKK1,SMTN,DRGX),(MTND5,FastKD2,CSMD3),(MTND5, COG3,CSMD3))是显着的生物标志物,直接涉及BMD。总的来说,前三种选定的基因(DKK1,MTND5,FastKD2)和一个基因(P值下的SIDT1 = 0.001)显着粘合来自30个药物,IBANDRONENT,ALENDRONES和30个候选药物重新培养的候选药物。此外,所提出的方法可以应用于可用多OMICS数据集的任何疾病模型。
translated by 谷歌翻译
Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
发现新药是寻求并证明因果关系。作为一种新兴方法利用人类的知识和创造力,数据和机器智能,因果推论具有减少认知偏见并改善药物发现决策的希望。尽管它已经在整个价值链中应用了,但因子推理的概念和实践对许多从业者来说仍然晦涩难懂。本文提供了有关因果推理的非技术介绍,审查了其最新应用,并讨论了在药物发现和开发中采用因果语言的机会和挑战。
translated by 谷歌翻译
Rapid advancements in collection and dissemination of multi-platform molecular and genomics data has resulted in enormous opportunities to aggregate such data in order to understand, prevent, and treat human diseases. While significant improvements have been made in multi-omic data integration methods to discover biological markers and mechanisms underlying both prognosis and treatment, the precise cellular functions governing these complex mechanisms still need detailed and data-driven de-novo evaluations. We propose a framework called Functional Integrative Bayesian Analysis of High-dimensional Multiplatform Genomic Data (fiBAG), that allows simultaneous identification of upstream functional evidence of proteogenomic biomarkers and the incorporation of such knowledge in Bayesian variable selection models to improve signal detection. fiBAG employs a conflation of Gaussian process models to quantify (possibly non-linear) functional evidence via Bayes factors, which are then mapped to a novel calibrated spike-and-slab prior, thus guiding selection and providing functional relevance to the associations with patient outcomes. Using simulations, we illustrate how integrative methods with functional calibration have higher power to detect disease related markers than non-integrative approaches. We demonstrate the profitability of fiBAG via a pan-cancer analysis of 14 cancer types to identify and assess the cellular mechanisms of proteogenomic markers associated with cancer stemness and patient survival.
translated by 谷歌翻译
鉴定新型药物靶标相互作用(DTI)是药物发现中的关键和速率限制步骤。虽然已经提出了深入学习模型来加速识别过程,但我们表明最先进的模型无法概括到新颖(即,从未见过的)结构上。我们首先揭示负责此缺点的机制,展示模型如何依赖于利用蛋白质 - 配体二分网络拓扑的捷径,而不是学习节点特征。然后,我们介绍AI-BIND,这是一个与无监督的预训练的基于网络的采样策略相结合的管道,使我们能够限制注释不平衡并改善新型蛋白质和配体的结合预测。我们通过预测具有结合亲和力的药物和天然化合物对SARS-COV-2病毒蛋白和相关的人蛋白质来说明Ai-reat的值。我们还通过自动扩展模拟和与最近的实验证据进行比较来验证这些预测。总体而言,AI-Bind提供了一种强大的高通量方法来识别药物目标组合,具有成为药物发现中强大工具的可能性。
translated by 谷歌翻译
Many scientific problems require identifying a small set of covariates that are associated with a target response and estimating their effects. Often, these effects are nonlinear and include interactions, so linear and additive methods can lead to poor estimation and variable selection. Unfortunately, methods that simultaneously express sparsity, nonlinearity, and interactions are computationally intractable -- with runtime at least quadratic in the number of covariates, and often worse. In the present work, we solve this computational bottleneck. We show that suitable interaction models have a kernel representation, namely there exists a "kernel trick" to perform variable selection and estimation in $O$(# covariates) time. Our resulting fit corresponds to a sparse orthogonal decomposition of the regression function in a Hilbert space (i.e., a functional ANOVA decomposition), where interaction effects represent all variation that cannot be explained by lower-order effects. On a variety of synthetic and real data sets, our approach outperforms existing methods used for large, high-dimensional data sets while remaining competitive (or being orders of magnitude faster) in runtime.
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
联合分析是一种流行的实验设计,用于测量多维偏好。研究人员研究了在控制其他相关因素的同时如何影响决策。当前,存在两种方法学方法来分析联合实验的数据。第一个重点是估计每个因素的平均边际效应,同时平均其他因素。尽管这允许基于直接设计的估计,但结果严重取决于其他因素的分布以及相互作用效应的汇总方式。一种基于模型的替代方法可以计算各种兴趣,但要求研究人员正确指定模型,这是与许多因素和可能的相互作用的联合分析的挑战性任务。此外,在合并相互作用时,常用的逻辑回归即使具有适度的因素,统计特性也很差。我们提出了一种基于条件随机测试的新假设检验方法,以回答联合分析的最基本问题:考虑到其他因素,感兴趣的因素是否重要?我们的方法仅基于因素的随机化,因此没有假设。但是,它允许研究人员使用任何测试统计量,包括基于复杂的机器学习算法的统计量。结果,我们能够结合现有的基于设计和基于模型的方法的优势。我们通过对移民偏好和政治候选评估的联合分析来说明拟议的方法。我们还扩展了提出的方法来测试联合分析中常用的规律性假设。可以使用开源软件包来实施建议的方法。
translated by 谷歌翻译
耐药性是对全球健康的重大威胁,以及整个疾病和药物发育的临床治疗中的重要疑虑。与药物结合有关的蛋白质中的突变是适应性耐药性的常见原因。因此,对突变如何影响药物和靶蛋白之间的相互作用的定量估计对于药物开发和临床实践来说是至关重要的。已经证明,依赖于分子动力学模拟,Rosetta方案以及机器学习方法的计算方法能够预测对蛋白质突变的配体亲和力变化。然而,严重限制的样本量和重质噪声诱导的过烧和泛化问题已经很广泛地采用了用于研究耐药性的机器学习。在本文中,我们提出了一种稳健的机器学习方法,称为Spldextratees,其可以准确地预测蛋白质突变并鉴定引起抗性突变的配体结合亲和力。特别是,所提出的方法按照易于学习的样本开始的特定方案级别,逐渐融入训练中的特定方案,然后在训练中迭代,然后在样本权重再验计算和模型更新之间迭代。此外,我们计算了基于物理的基于物理的结构特征,为机器学习模型提供了对这种数据有限预测任务的蛋白质的有价值的域知识。该实验证实了提出的方法在三种情况下预测激酶抑制剂抗性的方法,并实现了与分子动力学和Rosetta方法相当的预测准确性,具有较少的计算成本。
translated by 谷歌翻译
对于大型小分子的大型库,在考虑一系列疾病模型,测定条件和剂量范围时,详尽的组合化学筛选变得不可行。深度学习模型已实现了硅的最终技术,以预测协同得分。但是,药物组合的数据库对协同剂有偏见,这些结果不一定会概括分布不足。我们采用了使用深度学习模型的顺序模型优化搜索来快速发现与癌细胞系相比的协同药物组合,而与详尽的评估相比,筛查要少得多。在仅3轮ML引导的体外实验(包括校准圆圈)之后,我们发现,对高度协同组合进行了查询的一组药物对。进行了另外两轮ML引导实验,以确保趋势的可重复性。值得注意的是,我们重新发现药物组合后来证实将在临床试验中研究。此外,我们发现仅使用结构信息生成的药物嵌入开始反映作用机理。
translated by 谷歌翻译
大脑中的功能连接通常由加权网络表示,其中节点表示大脑中的位置,并且边缘表示这些位置之间的连接强度。分析这些数据的一个挑战是各个边缘水平的推断并不是特别生物学上的意义;解释在所谓的功能区域或节点组和它们之间的连接级别更有用;这通常被称为神经影像学文献中的“图表感知”推断。然而,汇集功能区域导致信息损失和更低的准确性。另一个挑战是主题内的边缘权重之间的相关性,这使得基于独立假设不可靠的推断。我们通过线性混合效果模型来解决这两种挑战,该挑战涉及功能区域和边缘依赖性,同时仍然建模各个边缘权重,以避免丢失信息。该模型允许将两种群体(例如患者和健康对照)进行比较,无论是在功能区水平和各个边缘水平,都导致生物学上有意义的解释。我们将该模型符合精神分裂症和健康控制的休息状态FMRI数据,获得与精神分裂症文献一致的可解释结果。
translated by 谷歌翻译
在许多学科中,在大量解释变量中推断反应变量的直接因果父母的问题具有很高的实际意义。但是,建立的方法通常至少会随着解释变量的数量而呈指数级扩展,难以扩展到非线性关系,并且很难扩展到周期性数据。受{\ em Debiased}机器学习方法的启发,我们研究了一种单Vs.-the-Rest特征选择方法,以发现响应的直接因果父母。我们提出了一种用于纯观测数据的算法,同时还提供理论保证,包括可能在周期存在下的部分非线性关系的情况。由于它仅需要对每个变量进行一个估计,因此我们的方法甚至适用于大图。与既定方法相比,我们证明了显着改善。
translated by 谷歌翻译
蛋白质RNA相互作用对各种细胞活性至关重要。已经开发出实验和计算技术来研究相互作用。由于先前数据库的限制,尤其是缺乏蛋白质结构数据,大多数现有的计算方法严重依赖于序列数据,只有一小部分使用结构信息。最近,alphafold彻底改变了整个蛋白质和生物领域。可预应学,在即将到来的年份,也将显着促进蛋白质-RNA相互作用预测。在这项工作中,我们对该字段进行了彻底的审查,调查绑定站点和绑定偏好预测问题,并覆盖常用的数据集,功能和模型。我们还指出了这一领域的潜在挑战和机遇。本调查总结了过去的RBP-RNA互动领域的发展,并预见到了alphafold时代未来的发展。
translated by 谷歌翻译
在许多纵向环境中,时间变化的协变量可能不会与响应同时测量,并且通常容易出现测量误差。幼稚的最后观察前向方法会产生估计偏差,现有的基于内核的方法的收敛速率缓慢和差异很大。为了应对这些挑战,我们提出了一种新的功能校准方法,以基于稀疏功能数据和测量误差的稀疏功能数据有效地学习纵向协变量。我们的方法来自功能性主成分分析,从观察到的异步和容易出现错误的协变量值中校准未观察到的同步协变量值,并广泛适用于异步纵向回归与时间传播或时间变化的系数。对于随时间不变系数的回归,我们的估计量是渐进的,无偏的,根-N一致的,并且渐近地正常。对于时变系数模型,我们的估计器具有最佳的变化系数收敛速率,而校准的渐近方差膨胀。在这两种情况下,我们的估计量都具有优于现有方法的渐近特性。拟议方法的可行性和可用性通过模拟和全国妇女健康研究的应用来验证,这是一项大规模的多站点纵向研究,对中年妇女健康。
translated by 谷歌翻译
该药物发现​​和开发过程是一个漫长而昂贵的过程,每次药物平均耗资超过10亿美元,需要10 - 15年的时间。为了减少在整个过程中的高水平流失量,在最近十年中,越来越多地将机器学习方法应用于药物发现和发育的各个阶段,尤其是在最早鉴定可药物疾病基因的阶段。在本文中,我们开发了一种新的张量分解模型,以预测用于治疗疾病的潜在药物靶标(基因或蛋白质)。我们创建了一个三维数据张量,该数据张量由1,048个基因靶标,860个疾病和230,0111111111111111111111111111111的证据属性和临床结果,并使用从开放式目标和药物数据库中提取的数据组成。我们用从药物发现的知识图中学到的基因目标表示丰富了数据,并应用了我们提出的方法来预测看不见的基因靶标和疾病对的临床结果。我们设计了三种评估策略来衡量预测性能,并将几个常用的机器学习分类器与贝叶斯矩阵和张量分解方法进行了基准测试。结果表明,合并知识图嵌入可显着提高预测准确性,并与密集的神经网络一起训练张量分解优于所有其他基线。总而言之,我们的框架结合了两种积极研究的机器学习方法,用于疾病目标识别,即张量分解和知识图表示学习,这可能是在数据驱动的药物发现中进一步探索的有希望的途径。
translated by 谷歌翻译
独立测试在观察数据中的统计和因果推断中起着核心作用。标准独立测试假定数据样本是独立的,并且分布相同(i.i.d。),但是在以关系系统为中心的许多现实世界数据集和应用中违反了该假设。这项工作通过为影响个人实例的一组观测值定义足够的观察表,研究了从关系系统中估算独立性的问题。具体而言,我们通过将内核平均嵌入为关系变量的灵活聚合函数来定义关系数据的边际和条件独立性测试。我们提出了一个一致的,非参数,可扩展的内核测试,以对非I.I.D的关系独立性测试进行操作。一组结构假设下的观察数据。我们在经验上对各种合成和半合成网络进行了经验评估我们提出的方法,并证明了与基于最新内核的独立性测试相比其有效性。
translated by 谷歌翻译
The discovery of drug-target interactions (DTIs) is a pivotal process in pharmaceutical development. Computational approaches are a promising and efficient alternative to tedious and costly wet-lab experiments for predicting novel DTIs from numerous candidates. Recently, with the availability of abundant heterogeneous biological information from diverse data sources, computational methods have been able to leverage multiple drug and target similarities to boost the performance of DTI prediction. Similarity integration is an effective and flexible strategy to extract crucial information across complementary similarity views, providing a compressed input for any similarity-based DTI prediction model. However, existing similarity integration methods filter and fuse similarities from a global perspective, neglecting the utility of similarity views for each drug and target. In this study, we propose a Fine-Grained Selective similarity integration approach, called FGS, which employs a local interaction consistency-based weight matrix to capture and exploit the importance of similarities at a finer granularity in both similarity selection and combination steps. We evaluate FGS on five DTI prediction datasets under various prediction settings. Experimental results show that our method not only outperforms similarity integration competitors with comparable computational costs, but also achieves better prediction performance than state-of-the-art DTI prediction approaches by collaborating with conventional base models. Furthermore, case studies on the analysis of similarity weights and on the verification of novel predictions confirm the practical ability of FGS.
translated by 谷歌翻译
Over the past decade, neural networks have been successful at making predictions from biological sequences, especially in the context of regulatory genomics. As in other fields of deep learning, tools have been devised to extract features such as sequence motifs that can explain the predictions made by a trained network. Here we intend to go beyond explainable machine learning and introduce SEISM, a selective inference procedure to test the association between these extracted features and the predicted phenotype. In particular, we discuss how training a one-layer convolutional network is formally equivalent to selecting motifs maximizing some association score. We adapt existing sampling-based selective inference procedures by quantizing this selection over an infinite set to a large but finite grid. Finally, we show that sampling under a specific choice of parameters is sufficient to characterize the composite null hypothesis typically used for selective inference-a result that goes well beyond our particular framework. We illustrate the behavior of our method in terms of calibration, power and speed and discuss its power/speed trade-off with a simpler data-split strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory genomics, and to more powerful methods for genome wide association studies (GWAS).
translated by 谷歌翻译
估算随机实验的因果效应是临床研究的核心。降低这些分析中的统计不确定性是统计学家的重要目标。注册管理机构,事先审判和健康记录构成了对患者的历史数据汇编,其在可能是可利用至此的患者下的历史数据。但是,大多数历史借贷方法通过牺牲严格的I型错误率控制来达到方差的减少。在这里,我们建议使用利用线性协变调整的历史数据来提高试验分析的效率而不会产生偏见。具体而言,我们在历史数据上培训预后模型,然后使用线性回归估计治疗效果,同时调整试验受试者预测结果(其预后分数)。我们证明,在某些条件下,这种预后调整程序在大类估算仪中获得了最低差异。当不符合这些条件时,预后的协变量调整仍然比原始协变量调整更有效,并且效率的增益与上述预后模型的预测准确性的衡量标准成正比,与原始协变量的线性关系的预测准确性。我们展示了使用模拟的方法和阿尔茨海默病的临床试验的再分析,并观察平均平均误差的有意义减少和估计方差。最后,我们提供了一种简化的渐近方差公式,使得能够计算这些收益的功率计算。在使用预后模型的预后模型中,可以实现10%和30%的样品尺寸减少。
translated by 谷歌翻译
Network-based analyses of dynamical systems have become increasingly popular in climate science. Here we address network construction from a statistical perspective and highlight the often ignored fact that the calculated correlation values are only empirical estimates. To measure spurious behaviour as deviation from a ground truth network, we simulate time-dependent isotropic random fields on the sphere and apply common network construction techniques. We find several ways in which the uncertainty stemming from the estimation procedure has major impact on network characteristics. When the data has locally coherent correlation structure, spurious link bundle teleconnections and spurious high-degree clusters have to be expected. Anisotropic estimation variance can also induce severe biases into empirical networks. We validate our findings with ERA5 reanalysis data. Moreover we explain why commonly applied resampling procedures are inappropriate for significance evaluation and propose a statistically more meaningful ensemble construction framework. By communicating which difficulties arise in estimation from scarce data and by presenting which design decisions increase robustness, we hope to contribute to more reliable climate network construction in the future.
translated by 谷歌翻译