声学数据提供从生物学和通信到海洋和地球科学等领域的科学和工程见解。我们调查了机器学习(ML)的进步和变革潜力,包括声学领域的深度学习。 ML是用于自动检测和利用模式印度的广泛的统计技术家族。相对于传统的声学和信号处理,ML是数据驱动的。给定足够的训练数据,ML可以发现特征之间的复杂关系。通过大量的训练数据,ML candiscover模型描述复杂的声学现象,如人类语音和混响。声学中的ML正在迅速发展,具有令人瞩目的成果和未来的重大前景。我们首先介绍ML,然后在五个声学研究领域强调MLdevelopments:语音处理中的源定位,海洋声学中的源定位,生物声学,地震探测和日常场景中的环境声音。
translated by 谷歌翻译
In this paper we review classification algorithms used to design Brain-Computer Interface (BCI) systems based on ElectroEncephaloGraphy (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.
translated by 谷歌翻译
脑电图(EEG)是一种复杂的信号,可能需要正确解释几次训练。最近,深度学习(DL)在帮助理解EEG信号方面具有很大的前景,因为它的容量能够容忍来自原始数据的良好特征表示。然而,与更传统的脑电图处理方法相比,DL是否真正具有优势,仍然是一个悬而未决的问题。在这项工作中,我们审查了156篇应用DL toEEG的论文,发表于2010年1月至2018年7月,并涵盖了不同的应用领域,如癫痫,睡眠,脑 - 计算机接口,以及认知和情感监测。我们提取趋势并突出有趣的方法,以便为将来的研究提供信息并制定建议。为每项研究提取各种数据项,涉及1)数据,2)预处理方法,3)DL设计选择,4)结果,以及5)实验的可​​重复性。我们的分析显示,研究中使用的EEG数据量从不到10分钟到数千小时不等。至于该模型,40%的研究使用卷积神经网络(CNNs),而14%使用复发神经网络(RNNs),最常用的是3到10层。此外,近一半的研究使用原始或预处理的脑电图时间序列训练他们的模型。最后,在所有相关研究中,DL方法相对于传统基线的中值增益不准确率为5.4%。然而,更重要的是,我们注意到研究经常遭受重复性差的影响:由于数据和代码不可用,大多数论文很难或不可能重现。为了帮助实现这一目标,我们提供了未来研究的建议清单,并提供了DL和EEG论文的摘要表,并邀请社区进行协作。
translated by 谷歌翻译
Automatic Speech Recognition (ASR) has historically been a driving force behind many machine learning (ML) techniques, including the ubiquitously used hidden Markov model, discriminative learning, structured sequence learning, Bayesian learning, and adaptive learning. Moreover, ML can and occasionally does use ASR as a large-scale, realistic application to rigorously test the effectiveness of a given technique, and to inspire new problems arising from the inherently sequential and dynamic nature of speech. On the other hand, even though ASR is available commercially for some applications, it is largely an unsolved problem-for almost all applications, the performance of ASR is not on par with human performance. New insight from modern ML methodology shows great promise to advance the state-of-the-art in ASR technology. This overview article provides readers with an overview of modern ML techniques as utilized in the current and as relevant to future ASR research and systems. The intent is to foster further cross-pollination between the ML and ASR communities than has occurred in the past. The article is organized according to the major ML paradigms that are either popular already or have potential for making significant contributions to ASR technology. The paradigms presented and elaborated in this overview include: generative and discriminative learning; supervised, unsupervised, semi-supervised, and active learning; adaptive and multi-task learning; and Bayesian learning. These learning paradigms are motivated and discussed in the context of ASR technology and applications. We finally present and analyze recent developments of deep learning and learning with sparse representations, focusing on their direct relevance to advancing ASR technology.
translated by 谷歌翻译
由于感知决策过程的非平稳性,解码不同心理状态的EEG信号对于脑 - 计算机接口(BCI)来说是一项具有挑战性的任务。本文提出了一种新的增强卷积神经网络(ConvNets)解码方案,用于基于多小波的时频(TF)因果关系分析辅助的运动想象(MI)EEG信号。具体而言,首先将多小波基函数与Geweke谱测量相结合,以获得高分辨率TF条件Granger因果关系(CGC)表示,其中采用正则化正交正演回归(ROFR)算法来检测具有良好泛化性能的简约模型。然后基于α波段多通道EEG信号的TF-CGC分布设计用于网络输入的保持时间,频率和连接位置信息的图像。通过使用时空卷积以及包括裁剪和提升方法在内的深度学习的进步,进一步构建了提升的ConvNets,以提取判别因果关系特征并对MI任务进行分类。我们提出的方法优于竞争优胜者算法,平均准确度增加12.15%,相关的主题间标准差减少74.02%,对于BCI竞赛-IV数据集-IIa的相同二元分类。实验结果表明,具有因果关系图像的增强ConvNets在解码MI-EEG信号方面表现良好,并为开发MI-BCI系统提供了一个有前景的框架。
translated by 谷歌翻译
请阅读并引用人脑映射中的修订版本:http://onlinelibrary.wiley.com/doi/10.1002/hbm.23730/full此处提供代码:https://github.com/robintibor/braindecode
translated by 谷歌翻译
The most popular noninvasive Brain Robot Interaction (BRI) technology uses the electroencephalogram-(EEG-) based Brain Computer Interface (BCI), to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques.
translated by 谷歌翻译
The performance of brain-computer interfaces (BCIs) improves with the amount of available training data; the statistical distribution of this data, however, varies across subjects as well as across sessions within individual subjects, limiting the transferability of training data or trained models between them. In this article, we review current transfer learning techniques in BCIs that exploit shared structure between training data of multiple subjects and/or sessions to increase performance. We then present a framework for transfer learning in the context of BCIs that can be applied to any arbitrary feature space, as well as a novel regression estimation method that is specifically designed for the structure of a system based on the electroencephalogram (EEG). We demonstrate the utility of our framework and method on subject-to-subject transfer in a motor-imagery paradigm as well as on session-to-session transfer in one patient diagnosed with amyotrophic lateral sclerosis (ALS), showing that it is able to outperform other comparable methods on an identical dataset.
translated by 谷歌翻译
机器学习算法的成功通常取决于数据表示,我们假设这是因为不同的表示可以或多或少地隐藏数据背后变异的不同解释因素。虽然可以使用特定领域知识来帮助设计表示,但也可以使用通用先验学习,并且对AI的追求正在激励设计实现这些先验的更强大的表示 - 学习算法。本文回顾了无监督特征学习和深度学习领域的最新研究成果,涵盖了概率模型,自动编码器,流形学习和深度网络的进步。这激发了关于学习良好表征,计算表示(即推理)以及表示学习,密度估计和流形学习之间的几何联系的适当目标的长期未回答的问题。
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although domain knowledge can be used to help design representations, learning can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, manifold learning, and deep learning. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
In this invited paper, my overview material on the same topic as presented in the plenary overview session of APSIPA-2011 and the tutorial material presented in the same conference [1] are expanded and updated to include more recent developments in deep learning. The previous and the updated materials cover both theory and applications, and analyze its future directions. The goal of this tutorial survey is to introduce the emerging area of deep learning or hierarchical learning to the APSIPA community. Deep learning refers to a class of machine learning techniques, developed largely since 2006, where many stages of non-linear information processing in hierarchical architectures are exploited for pattern classification and for feature learning. In the more recent literature, it is also connected to representation learning, which involves a hierarchy of features or concepts where higher-level concepts are defined from lower-level ones and where the same lower-level concepts help to define higher-level ones. In this tutorial survey, a brief history of deep learning research is discussed first. Then, a classificatory scheme is developed to analyze and summarize major work reported in the recent deep learning literature. Using this scheme, I provide a taxonomy-oriented survey on the existing deep architectures and algorithms in the literature, and categorize them into three classes: generative, discriminative, and hybrid. Three representative deep architectures-deep autoencoders, deep stacking networks with their generalization to the temporal domain (recurrent networks), and deep neural networks (pretrained with deep belief networks)-one in each of the three classes, are presented in more detail. Next, selected applications of deep learning are reviewed in broad areas of signal and information processing including audio/speech, image/vision, multimodality, language modeling, natural language processing, and information retrieval. Finally, future directions of deep learning are discussed and analyzed.
translated by 谷歌翻译
We are honored to welcome you to the 2nd International Workshop on Advanced Analyt-ics and Learning on Temporal Data (AALTD), which is held in Riva del Garda, Italy, on September 19th, 2016, co-located with The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2016). The aim of this workshop is to bring together researchers and experts in machine learning, data mining, pattern analysis and statistics to share their challenging issues and advance researches on temporal data analysis. Analysis and learning from temporal data cover a wide scope of tasks including learning metrics, learning representations, unsupervised feature extraction, clustering and classification. This volume contains the conference program, an abstract of the invited keynotes and the set of regular papers accepted to be presented at the conference. Each of the submitted papers was reviewed by at least two independent reviewers, leading to the selection of eleven papers accepted for presentation and inclusion into the program and these proceedings. The contributions are given by the alphabetical order, by surname. The keynote given by Marco Cuturi on "Regularized DTW Divergences for Time Se-ries" focuses on the definition of alignment kernels for time series that can later be used at the core of standard machine learning algorithms. The one given by Tony Bagnall on "The Great Time Series Classification Bake Off" presents an important attempt to experimentally compare performance of a wide range of time series classifiers, together with ensemble classifiers that aim at combining existing classifiers to improve classification quality. Accepted papers spanned from innovative ideas on analytic of temporal data, including promising new approaches and covering both practical and theoretical issues. We wish to thank the ECML PKDD council members for giving us the opportunity to hold the AALTD workshop within the framework of the ECML/PKDD Conference and the members of the local organizing committee for their support. The organizers of the AALTD conference gratefully thank the financial support of the Université de Rennes 2, MODES and Universidade da Coruña. Last but not least, we wish to thank the contributing authors for the high quality works and all members of the Reviewing Committee for their invaluable assistance in the iii selection process. All of them have significantly contributed to the success of AALTD 2106. We sincerely hope that the workshop participants have a great and fruitful time at the conference.
translated by 谷歌翻译
We are honored to welcome you to the 2nd International Workshop on Advanced Analyt-ics and Learning on Temporal Data (AALTD), which is held in Riva del Garda, Italy, on September 19th, 2016, co-located with The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2016). The aim of this workshop is to bring together researchers and experts in machine learning, data mining, pattern analysis and statistics to share their challenging issues and advance researches on temporal data analysis. Analysis and learning from temporal data cover a wide scope of tasks including learning metrics, learning representations, unsupervised feature extraction, clustering and classification. This volume contains the conference program, an abstract of the invited keynotes and the set of regular papers accepted to be presented at the conference. Each of the submitted papers was reviewed by at least two independent reviewers, leading to the selection of eleven papers accepted for presentation and inclusion into the program and these proceedings. The contributions are given by the alphabetical order, by surname. The keynote given by Marco Cuturi on "Regularized DTW Divergences for Time Se-ries" focuses on the definition of alignment kernels for time series that can later be used at the core of standard machine learning algorithms. The one given by Tony Bagnall on "The Great Time Series Classification Bake Off" presents an important attempt to experimentally compare performance of a wide range of time series classifiers, together with ensemble classifiers that aim at combining existing classifiers to improve classification quality. Accepted papers spanned from innovative ideas on analytic of temporal data, including promising new approaches and covering both practical and theoretical issues. We wish to thank the ECML PKDD council members for giving us the opportunity to hold the AALTD workshop within the framework of the ECML/PKDD Conference and the members of the local organizing committee for their support. The organizers of the AALTD conference gratefully thank the financial support of the Université de Rennes 2, MODES and Universidade da Coruña. Last but not least, we wish to thank the contributing authors for the high quality works and all members of the Reviewing Committee for their invaluable assistance in the iii selection process. All of them have significantly contributed to the success of AALTD 2106. We sincerely hope that the workshop participants have a great and fruitful time at the conference.
translated by 谷歌翻译
We introduce a very general method for high dimensional classification, based on careful combination of the results of applying an arbitrary base classifier to random projections of the feature vectors into a lower dimensional space. In one special case that we study in detail, the random projections are divided into disjoint groups, and within each group we select the projection yielding the smallest estimate of the test error. Our random-projection ensemble classifier then aggregates the results of applying the base classifier on the selected projections, with a data-driven voting threshold to determine the final assignment. Our theoretical results elucidate the effect on performance of increasing the number of projections. Moreover, under a boundary condition that is implied by the sufficient dimension reduction assumption, we show that the test excess risk of the random-projection ensemble classifier can be controlled by terms that do not depend on the original data dimension and a term that becomes negligible as the number of projections increases. The classifier is also compared empirically with several other popular high dimensional classifiers via an extensive simulation study, which reveals its excellent finite sample performance.
translated by 谷歌翻译
今天的电信网络已成为大量广泛异构数据的来源。该信息可以从网络交通轨迹,网络警报,信号质量指示符,用户行为数据等中检索。需要高级数学工具从这些数据中提取有意义的信息,并从网络生成的数据中做出与网络的正常运行有关的决策。在这些数学工具中,机器学习(ML)被认为是执行网络数据分析和实现自动网络自配置和故障管理的最具前景的方法之一。 ML技术在光通信网络领域的应用受到光网络在最近几年所面临的网络复杂性的前所未有的增长的推动。这种复杂性的增加是由于引入了一系列可调和相互依赖的系统参数(例如,路由配置,调制格式,符号率,编码方案等),这些参数通过使用相干传输/接收技术,高级数字信号处理和光纤传播中非线性效应的补偿。在本文中,我们概述了ML在光通信和网络中的应用。我们对涉及该主题的相关文献进行分类和调查,并且我们还为对该领域感兴趣的研究人员和从业者提供了ML的入门教程。虽然最近出现了大量的研究论文,但ML光学网络的应用仍处于起步阶段:为了激发这一领域的进一步工作,我们总结了该论文提出了新的可能的研究方向。
translated by 谷歌翻译
The aim of this paper 1 is to give an overview of domain adaptation and transfer learning with a specific view on visual applications. After a general motivation, we first position domain adaptation in the larger transfer learning problem. Second, we try to address and analyze briefly the state-of-the-art methods for different types of scenarios, first describing the historical shallow methods, addressing both the homogeneous and the heterogeneous domain adaptation methods. Third, we discuss the effect of the success of deep convolutional architectures which led to new type of domain adaptation methods that integrate the adaptation within the deep architecture. Fourth, we overview the methods that go beyond image categorization, such as object detection or image segmentation, video analyses or learning visual attributes. Finally, we conclude the paper with a section where we relate domain adaptation to other machine learning solutions.
translated by 谷歌翻译
D ue to the volume conduction multichannel electroencephalogram (EEG) recordings give a rather blurred image of brain activity. Therefore spatial filters are extremely useful in single-trial analysis in order to improve the signal-to-noise ratio. There are powerful methods from machine learning and signal processing that permit the optimization of spatio-temporal filters for each subject in a data dependent fashion beyond the fixed filters based on the sensor geometry, e.g., Laplacians. Here we elucidate the theoretical background of the common spatial pattern (CSP) algorithm, a popular method in brain-computer interface (BCI) research. Apart from reviewing several variants of the basic algorithm, we reveal tricks of the trade for achieving a powerful CSP performance, briefly elaborate on theoretical aspects of CSP, and demonstrate the application of CSP-type pre-processing in our studies of the Berlin BCI (BBCI) project.
translated by 谷歌翻译
深度学习提出了希望和期望,作为许多应用程序的一般解决方案;事实证明它已被证明是有效的,但它也显示出对大量数据的强烈依赖性。幸运的是,已经证明,即使数据稀缺,也可以通过重复使用priorknowledge来训练成功的模型。因此,在最广泛的定义中,开发转移学习技术是部署有效和准确的智能系统的关键因素。本文将重点研究一系列适用于视觉目标识别任务的转移学习方法,特别是图像分类。转移学习是一个通用术语,并且特定设置已经给出了特定的名称:当学习者只能访问来自目标域的标记数据和来自不同域(源)的标记数据时,问题被称为“无监督域适应”。 (DA)。这项工作的第一部分将集中在这个设置的三种方法:其中一种方法涉及特征,一种是图像,而第三种方法同时使用两种。第二部分将重点关注机器人感知的现实生活问题,特别是RGB-D识别。机器人平台通常不仅限于色彩感知;他们经常带着Depthcamera。不幸的是,深度模态很少用于视觉识别,因为缺乏预先训练的模型,从中可以传输并且很少有数据从头开始。将提出两种处理这种情况的方法:一种使用合成数据,另一种利用跨模态转移学习。
translated by 谷歌翻译
Emotion recognition based on physiological signals has been a hot topic and applied in many areas such as safe driving, health care and social security. In this paper, we present a comprehensive review on physiological signal-based emotion recognition, including emotion models, emotion elicitation methods, the published emotional physiological datasets, features, classifiers, and the whole framework for emotion recognition based on the physiological signals. A summary and comparation among the recent studies has been conducted, which reveals the current existing problems and the future work has been discussed.
translated by 谷歌翻译