机场一直不断发展和采用数字技术,以提高运营效率,增强乘客经验,从现有基础设施产生辅助收入和提升能力。 Covid-19 Pandemase也挑战机场和航空利益相关者,以适应和管理新的业务挑战,例如促进非接触式旅游经验和确保业务连续性。使用行业4.0技术的数字化为机场提供机会,以解决与Covid-19大流行相关的短期挑战,同时也为未来的危机做准备未来的长期挑战。通过对102条有关文章的系统文献综述,我们讨论了当前在机场,相关挑战以及未来的研究方向上采用行业4.0技术的现状。本综述结果表明,行业4.0技术的实施正在慢慢获得机场环境的牵引力,并在发展未来机场的数字转型旅程中继续保持相关。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
即将开发我们呼叫所体现的系统的新一代越来越自主和自学习系统。在将这些系统部署到真实上下文中,我们面临各种工程挑战,因为它以有益的方式协调所体现的系统的行为至关重要,确保他们与我们以人为本的社会价值观的兼容性,并且设计可验证安全可靠的人类-Machine互动。我们正在争辩说,引发系统工程将来自嵌入到体现系统的温室,并确保动态联合的可信度,这种情况意识到的情境意识,意图,探索,探险,不断发展,主要是不可预测的,越来越自主的体现系统在不确定,复杂和不可预测的现实世界环境中。我们还识别了许多迫切性的系统挑战,包括可信赖的体现系统,包括强大而人为的AI,认知架构,不确定性量化,值得信赖的自融化以及持续的分析和保证。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
讨论了与科学,工程,建筑和人为因素相关的月球表面上的运输设施问题。未来十年制造的后勤决策可能对财务成功至关重要。除了概述一些问题及其与数学和计算的关系外,本文还为决策者,科学家和工程师提供了有用的资源。
translated by 谷歌翻译
MetaVerse,巨大的虚拟物理网络空间,为艺术家带来了前所未有的机会,将我们的身体环境的每个角落与数字创造力混合。本文对计算艺术进行了全面的调查,其中七个关键主题与成权相关,描述了混合虚拟物理现实中的新颖艺术品。主题首先涵盖了MetaVerse的建筑元素,例如虚拟场景和字符,听觉,文本元素。接下来,已经反映了诸如沉浸式艺术,机器人艺术和其他用户以其他用户的方法提供了沉浸式艺术,机器人艺术和其他用户中心的若干非凡类型的新颖创作。最后,我们提出了几项研究议程:民主化的计算艺术,数字隐私和搬迁艺术家的安全性,为数字艺术品,技术挑战等等的所有权认可。该调查还担任艺术家和搬迁技术人员的介绍材料,以开始在超现实主义网络空间领域创造。
translated by 谷歌翻译
随着全球人口越来越多的人口驱动世界各地的快速城市化,有很大的需要蓄意审议值得生活的未来。特别是,随着现代智能城市拥抱越来越多的数据驱动的人工智能服务,值得记住技术可以促进繁荣,福祉,城市居住能力或社会正义,而是只有当它具有正确的模拟补充时(例如竭尽全力,成熟机构,负责任治理);这些智能城市的最终目标是促进和提高人类福利和社会繁荣。研究人员表明,各种技术商业模式和特征实际上可以有助于极端主义,极化,错误信息和互联网成瘾等社会问题。鉴于这些观察,解决了确保了诸如未来城市技术基岩的安全,安全和可解释性的哲学和道德问题,以为未来城市的技术基岩具有至关重要的。在全球范围内,有能够更加人性化和以人为本的技术。在本文中,我们分析和探索了在人以人为本的应用中成功部署AI的安全,鲁棒性,可解释性和道德(数据和算法)挑战的关键挑战,特别强调这些概念/挑战的融合。我们对这些关键挑战提供了对现有文献的详细审查,并分析了这些挑战中的一个可能导致他人的挑战方式或帮助解决其他挑战。本文还建议了这些域的当前限制,陷阱和未来研究方向,以及如何填补当前的空白并导致更好的解决方案。我们认为,这种严谨的分析将为域名的未来研究提供基准。
translated by 谷歌翻译
深度学习模式和地球观察的协同组合承诺支持可持续发展目标(SDGS)。新的发展和夸张的申请已经在改变人类将面临生活星球挑战的方式。本文审查了当前对地球观测数据的最深入学习方法,以及其在地球观测中深度学习的快速发展受到影响和实现最严重的SDG的应用。我们系统地审查案例研究至1)实现零饥饿,2)可持续城市,3)提供保管安全,4)减轻和适应气候变化,5)保留生物多样性。关注重要的社会,经济和环境影响。提前令人兴奋的时期即将到来,算法和地球数据可以帮助我们努力解决气候危机并支持更可持续发展的地方。
translated by 谷歌翻译
自动驾驶在过去十年中取得了重大的研究和发展中的重要里程碑。在道路上的自动车辆部署时,对该领域的兴趣越来越令人兴趣,承诺更安全,更生态的运输系统。随着计算强大的人工智能(AI)技术的兴起,自动车辆可以用高精度感测它们的环境,进行安全的实时决策,并在没有人类干预的情况下更可靠地运行。然而,在现有技术中,人类智能决策通常不可能理解,这种缺陷阻碍了这种技术在社会上可接受。因此,除了制造安全的实时决策之外,自治车辆的AI系统还需要解释如何构建这些决策,以便在许多司法管辖区兼容监管。我们的研究在开发可解释的人工智能(XAI)的自治车辆方法上阐明了全面的光芒。特别是,我们做出以下贡献。首先,我们在最先进的自主车辆行业的解释方面彻底概述了目前的差距。然后,我们显示了该领域的解释和解释接收器的分类。第三,我们为端到端自主驾驶系统的架构提出了一个框架,并证明了Xai在调试和调节这些系统中的作用。最后,作为未来的研究方向,我们提供了XAI自主驾驶方法的实地指南,可以提高运营安全性和透明度,以实现监管机构,制造商和所有参与利益相关者的公共批准。
translated by 谷歌翻译
无线电接入网络(RAN)技术继续见证巨大的增长,开放式运行越来越最近的势头。在O-RAN规范中,RAN智能控制器(RIC)用作自动化主机。本文介绍了对O-RAN堆栈相关的机器学习(ML)的原则,特别是加强学习(RL)。此外,我们审查无线网络的最先进的研究,并将其投入到RAN框架和O-RAN架构的层次结构上。我们在整个开发生命周期中提供ML / RL模型面临的挑战的分类:从系统规范到生产部署(数据采集,模型设计,测试和管理等)。为了解决挑战,我们将一组现有的MLOPS原理整合,当考虑RL代理时,具有独特的特性。本文讨论了系统的生命周期模型开发,测试和验证管道,称为:RLOPS。我们讨论了RLOP的所有基本部分,包括:模型规范,开发和蒸馏,生产环境服务,运营监控,安全/安全和数据工程平台。根据这些原则,我们提出了最佳实践,以实现自动化和可重复的模型开发过程。
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
我们提出了一种新的四管齐下的方法,在文献中首次建立消防员的情境意识。我们构建了一系列深度学习框架,彼此之叠,以提高消防员在紧急首次响应设置中进行的救援任务的安全性,效率和成功完成。首先,我们使用深度卷积神经网络(CNN)系统,以实时地分类和识别来自热图像的感兴趣对象。接下来,我们将此CNN框架扩展了对象检测,跟踪,分割与掩码RCNN框架,以及具有多模级自然语言处理(NLP)框架的场景描述。第三,我们建立了一个深入的Q学习的代理,免受压力引起的迷失方向和焦虑,能够根据现场消防环境中观察和存储的事实来制定明确的导航决策。最后,我们使用了一种低计算无监督的学习技术,称为张量分解,在实时对异常检测进行有意义的特征提取。通过这些临时深度学习结构,我们建立了人工智能系统的骨干,用于消防员的情境意识。要将设计的系统带入消防员的使用,我们设计了一种物理结构,其中处理后的结果被用作创建增强现实的投入,这是一个能够建议他们所在地的消防员和周围的关键特征,这对救援操作至关重要在手头,以及路径规划功能,充当虚拟指南,以帮助迷彩的第一个响应者恢复安全。当组合时,这四种方法呈现了一种新颖的信息理解,转移和综合方法,这可能会大大提高消防员响应和功效,并降低寿命损失。
translated by 谷歌翻译
自从37年和64年前构思了移动通信和人工智能以来,这是一个令人兴奋的旅程。虽然这两个领域独立地演变而来的通信和计算产业,但是快速收敛的5G和深度学习开始显着改变核心通信基础设施,网络管理和垂直应用。本文首先概述了早期移动通信和人工智能的个人路线图,当AI和移动通信开始汇聚时,集中在3G到5G中审查时代。关于电信人工智能,本文进一步详细介绍了移动通信生态系统中人工智能的进展。然后,该文件总结了电信生态系统中AI的分类以及各种国际电信标准化机构指定的进化路径。本文预测了电信人工智能的前瞻性路线图。符合3GPP和ITU-R的时间表5G&6G,本文进一步探讨了3GPP和奥兰路线之后的网络智能,经验和意图驱动的网络管理和操作,网络AI信令系统,智能中办事处的BSS,智能化由BSS和OSS融合驱动的客户体验管理和政策控制,从SLA到ELA的Evolution,以及垂直智能专用网络。本文的愿景结束了AI将重塑未来B5G或6G景观,我们需要枢转我们的研发,标准化和生态系统,以充分承担前所未有的机会。
translated by 谷歌翻译
虽然AI有利于人类,但如果没有适当发展,它也可能会损害人类。 HCI工作的重点是从与非AI计算系统的传统人类交互转换,以与AI系统交互。我们在HCI视角下开展了高级文献综述,对当前工作的整体分析。我们的审核和分析突出了AI技术引入的新变更以及HCI专业人员在AI系统开发中应用人以人为本的AI(HCAI)方法时,新挑战的新挑战。我们还确定了与AI系统人类互动的七个主要问题,其中HCI专业人员在开发非AI计算系统时没有遇到。为了进一步实现HCAI方法的实施,我们确定了与特定的HCAI驱动的设计目标相关的新的HCI机会,以指导HCI专业人员解决这些新问题。最后,我们对当前HCI方法的评估显示了这些方法支持开发AI系统的局限性。我们提出了可以帮助克服这些局限性的替代方法,并有效帮助HCI专业人员将HCAI方法应用于AI系统的发展。我们还为HCI专业人员提供战略建议,以有效影响利用HCAI方法的AI系统的发展,最终发展HCAI系统。
translated by 谷歌翻译
汽车行业在过去几十年中见证了越来越多的发展程度;从制造手动操作车辆到具有高自动化水平的制造车辆。随着近期人工智能(AI)的发展,汽车公司现在雇用BlackBox AI模型来使车辆能够感知其环境,并使人类少或没有输入的驾驶决策。希望能够在商业规模上部署自治车辆(AV),通过社会接受AV成为至关重要的,并且可能在很大程度上取决于其透明度,可信度和遵守法规的程度。通过为AVS行为的解释提供对这些接受要求的遵守对这些验收要求的评估。因此,解释性被视为AVS的重要要求。 AV应该能够解释他们在他们运作的环境中的“见到”。在本文中,我们对可解释的自动驾驶的现有工作体系进行了全面的调查。首先,我们通过突出显示并强调透明度,问责制和信任的重要性来开放一个解释的动机;并审查与AVS相关的现有法规和标准。其次,我们识别并分类了参与发展,使用和监管的不同利益相关者,并引出了AV的解释要求。第三,我们对以前的工作进行了严格的审查,以解释不同的AV操作(即,感知,本地化,规划,控制和系统管理)。最后,我们确定了相关的挑战并提供建议,例如AV可解释性的概念框架。该调查旨在提供对AVS中解释性感兴趣的研究人员所需的基本知识。
translated by 谷歌翻译
人工智能(AI)是塑造未来的颠覆性技术之一。它在主要智能城市解决方案中的数据驱动决策越来越多,包括运输,教育,医疗保健,公共治理和电力系统。与此同时,它在保护Cyber​​威胁,攻击,损害或未授权访问中保护关键网络基础设施时越来越受欢迎。然而,那些传统的AI技术的重要问题之一(例如,深度学习)是,复杂性和复杂性的快速进展推进,并原始是不可诠释的黑匣子。在很多场合,了解控制和信任系统意外或看似不可预测的输出的决策和偏见是非常具有挑战性的。承认,对决策可解释性的控制丧失成为许多数据驱动自动化应用的重要问题。但它可能会影响系统的安全性和可信度吗?本章对网络安全的机器学习应用进行了全面的研究,以表示需要解释来解决这个问题。在这样做的同时,本章首先探讨了智能城市智能城市安全应用程序的AI技术的黑匣子问题。后来,考虑到新的技术范式,解释说明的人工智能(XAI),本章讨论了从黑盒到白盒的过渡。本章还讨论了关于智能城市应用不同自治系统在应用基于AI的技术的解释性,透明度,可辨能力和解释性的过渡要求。最后,它介绍了一些商业XAI平台,在提出未来的挑战和机遇之前,对传统的AI技术提供解释性。
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
船上自治技术,如规划和调度,识别科学目标和基于内容的数据摘要,将导致令人兴奋的新空间科学任务。然而,尚未研究具有此类船上自治能力的经营任务的挑战,这是足以在使命概念中考虑的细节水平。这些自主功能需要更改当前的操作流程,实践和工具。我们制定了一个案例研究,以评估使运营商和科学家通过促进地面人员和车载算法之间的共同模型来运营自主航天器所需的变化。我们评估使运营商和科学家能够向航天器传达所需的新的操作工具和工作流程,并能够重建和解释船上和航天器状态的决定。这些工具的模型用于用户学习,了解过程和工具在实现共享理解框架方面的有效性,以及在运营商和科学家有效实现特派团科学目标的能力。
translated by 谷歌翻译
服务交付设定为体验一个主要的范式转变,并在无人机技术中加上客户的快速进步,加上客户的较高期望和增加的竞争。我们提出了一种新颖的面向服务的方法,以使无人机运行的Skyway网络中的包装中无处不在地传送。我们讨论了基于服务的无人机交付的福利,框架和建筑,当代方法,开放的挑战和未来视力方向。
translated by 谷歌翻译
主动位置估计(APE)是使用一个或多个传感平台本地化一个或多个目标的任务。 APE是搜索和拯救任务,野生动物监测,源期限估计和协作移动机器人的关键任务。 APE的成功取决于传感平台的合作水平,他们的数量,他们的自由度和收集的信息的质量。 APE控制法通过满足纯粹剥削或纯粹探索性标准,可以实现主动感测。前者最大限度地减少了位置估计的不确定性;虽然后者驱动了更接近其任务完成的平台。在本文中,我们定义了系统地分类的主要元素,并批判地讨论该域中的最新状态。我们还提出了一个参考框架作为对截图相关的解决方案的形式主义。总体而言,本调查探讨了主要挑战,并设想了本地化任务的自主感知系统领域的主要研究方向。促进用于搜索和跟踪应用的强大主动感测方法的开发也有益。
translated by 谷歌翻译