分析来自湍流流动模拟的大规模数据是内存密集型,需要大量资源。这一主要挑战强调了对数据压缩技术的需求。在这项研究中,我们应用基于矢量量化的物理知识的深度学习技术,以产生来自三维湍流流的模拟的离散,低维表示数据。深度学习框架由卷积层组成,并将物理限制融合在流量上,例如保留速度梯度的不可压缩性和全局统计特征。使用基于比较的相似性和物理学的度量来评估模型的准确性。训练数据集是由不可压缩,统计静止,各向同性的各向同性湍流的直接数值模拟产生的。该损失数据压缩方案的性能不仅通过静止,各向同性湍流流动的看不见的数据评估,而且还评估了来自衰减各向同性湍流的数据和泰勒 - 绿色涡流的数据。将压缩比(CR)定义为原始数据大小与压缩的比率,结果表明我们的基于向量量化的模型可以提供CR $ = 85 $与$ O的均线错误(MSE)提供CR $ = 85 $(10 ^ {-3})$,以及忠实地重现流程统计数据的预测,除了有一些损失的最小尺度。与最近基于传统的AutoEncoder的研究相比,其中压缩在连续空间中进行压缩,我们的模型将CR提高了30多美元,并按一大阶数减少了MSE。我们的压缩模​​型是一种有吸引力的解决方案,适用于需要快速,高质量和低开销编码和大数据的解码。
translated by 谷歌翻译
我们使用数据驱动方法使用尖端深度学习技术来模拟三维湍流流。深度学习框架包括流量的物理限制,例如保留速度梯度张量的不可压缩和全局统计不变。使用基于统计和物理的度量来评估模型的准确性。数据集来自立方框中的不可压缩,统计上固定,各向同性湍流的直接数值模拟。由于数据集的大小是内存密集,因此首先生成速度数据的低维表示,然后将其传递给序列预测网络,该预测网络学习基础数据的空间和时间相关性。通过使用矢量量化的AutoEncoder(VQ-AE)提取来执行维度降低,这就学习离散潜变量。对于序列预测,使用自然语言处理的变压器架构的思想,并与更多标准复发网络(如卷积LSTM)进行比较。这些架构被设计和训练,以执行序列以序列多级分类任务,其中它们采用固定长度(k)的输入序列,并预测具有固定长度(P)的序列,表示未来的时间瞬间流动。我们的短期预测结果表明,由于预测的自回归性质,两种模型的结果的准确性恶化了预测的快照。基于我们的诊断测试,训练有素的Conv变压器模型优于Conv-LSTM One,可以确定地,定量和定性,保留大规模并捕获良好的流量尺度,但在恢复小且间歇的流体运动时失效。
translated by 谷歌翻译
Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.
translated by 谷歌翻译
机器学习正迅速成为科学计算的核心技术,并有许多机会推进计算流体动力学领域。从这个角度来看,我们强调了一些潜在影响最高的领域,包括加速直接数值模拟,以改善湍流闭合建模,并开发增强的减少订单模型。我们还讨论了机器学习的新兴领域,这对于计算流体动力学以及应考虑的一些潜在局限性是有希望的。
translated by 谷歌翻译
遇到错误的损耗压缩正成为必不可少的技术,即当今科学项目的成功,并在模拟或仪器数据获取过程中产生了大量数据。它不仅可以显着减少数据大小,而且还可以基于用户指定的错误界限控制压缩错误。自动编码器(AE)模型已被广泛用于图像压缩中,但是很少有基于AE的压缩方法支持遇到错误的功能,这是科学应用所要求的。为了解决这个问题,我们使用卷积自动编码器探索以改善科学数据的错误损失压缩,并提供以下三个关键贡献。 (1)我们对各种自动编码器模型的特性进行了深入的研究,并根据SZ模型开发了基于错误的自动编码器的框架。 (2)我们在设计的基于AE的错误压缩框架中优化了主要阶段的压缩质量,并微调块大小和潜在尺寸,并优化了潜在向量的压缩效率。 (3)我们使用五个现实世界的科学数据集评估了我们提出的解决方案,并将其与其他六项相关作品进行了比较。实验表明,我们的解决方案在测试中的所有压缩机中表现出非常具有竞争性的压缩质量。从绝对的角度来看,与SZ2.1和ZFP相比,在高压比的情况下,它可以获得更好的压缩质量(压缩率和相同数据失真的100%〜800%提高)。
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译
AutoEncoder技术在减少秩序建模中发现越来越常见的用途作为创建潜在空间的手段。这种缩小的订单表示为与时间序列预测模型集成时的非线性动力系统提供了模块化数据驱动建模方法。在这封信中,我们提出了一个非线性适当的正交分解(POD)框架,它是一个端到端的Galerkin的模型,组合AutoEncoders,用于动态的长短期内存网络。通过消除由于Galerkin模型的截断导致的投影误差,所提出的非流体方法的关键推动器是在POD系数的全级扩展和动态发展的潜空间之间的非线性映射的运动结构。我们测试我们的模型减少对流主导系统的框架,这通常是针对减少订单模型的具有挑战性。我们的方法不仅提高了准确性,而且显着降低了培训和测试的计算成本。
translated by 谷歌翻译
The renewed interest from the scientific community in machine learning (ML) is opening many new areas of research. Here we focus on how novel trends in ML are providing opportunities to improve the field of computational fluid dynamics (CFD). In particular, we discuss synergies between ML and CFD that have already shown benefits, and we also assess areas that are under development and may produce important benefits in the coming years. We believe that it is also important to emphasize a balanced perspective of cautious optimism for these emerging approaches
translated by 谷歌翻译
湍流无处不在,获得有效,准确且可概括的订单模型仍然是一个具有挑战性的问题。该手稿开发了减少拉格朗日模型的湍流模型的层次结构,以研究和比较在拉格朗日框架内实施平滑的粒子流体动力学(SPH)结构与嵌入神经网络(NN)作为通用函数近似器中的效果。 SPH是用于近似流体力学方程的无网格拉格朗日方法。从基于神经网络(NN)的拉格朗日加速运算符的参数化开始,该层次结构逐渐结合了一个弱化和参数化的SPH框架,该框架可以执行物理对称性和保护定律。开发了两个新的参数化平滑核,其中包含在完全参数化的SPH模拟器中,并与立方和四分之一的平滑核进行了比较。对于每个模型,我们使用基于梯度的优化最小化的不同损耗函数,其中使用自动分化(AD)和灵敏度分析(SA)获得了有效的梯度计算。每个模型均经过两个地面真理(GT)数据集训练,该数据集与每周可压缩的均质各向同性湍流(hit),(1)使用弱压缩SPH的验证集,(2)来自直接数值模拟(DNS)的高忠诚度集。数值证据表明:(a)对“合成” SPH数据的方法验证; (b)嵌入在SPH框架中近似状态方程的NN的能力; (b)每个模型都能插入DNS数据; (c)编码更多的SPH结构可提高对不同湍流的马赫数和时间尺度的普遍性; (d)引入两个新型参数化平滑核可提高SPH比标准平滑核的准确性。
translated by 谷歌翻译
传统上,基于标度律维模型已被用于参数对流换热岩类地行星像地球,火星,水星和金星的内部,以解决二维或三维高保真前插的计算瓶颈。然而,这些在物理它们可以建模(例如深度取决于材料特性),并预测只平均量的量的限制,例如平均温度地幔。我们最近发现,前馈神经网络(FNN),使用了大量的二维模拟可以克服这个限制和可靠地预测整个1D横向平均温度分布的演变,及时为复杂的模型训练。我们现在扩展该方法以预测的完整2D温度字段,它包含在对流结构如热羽状和冷downwellings的形式的信息。使用的地幔热演化的10,525二维模拟数据集火星般的星球,我们表明,深度学习技术能够产生可靠的参数代理人(即代理人即预测仅基于参数状态变量,如温度)底层偏微分方程。我们首先使用卷积自动编码由142倍以压缩温度场,然后使用FNN和长短期存储器网络(LSTM)来预测所述压缩字段。平均起来,FNN预测是99.30%,并且LSTM预测是准确相对于看不见模拟99.22%。在LSTM和FNN预测显示,尽管较低的绝对平均相对精度,LSTMs捕捉血流动力学优于FNNS适当的正交分解(POD)。当求和,从FNN预测和从LSTM预测量至96.51%,相对97.66%到原始模拟的系数,分别与POD系数。
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译
基于深度学习的潜在表示已被广泛用于众多科学可视化应用,例如等法相似性分析,音量渲染,流场合成和数据减少,仅举几例。但是,现有的潜在表示主要以无监督的方式从原始数据生成,这使得很难合并域兴趣以控制潜在表示的大小和重建数据的质量。在本文中,我们提出了一种新颖的重要性驱动的潜在表示,以促进领域利益引导的科学数据可视化和分析。我们利用空间重要性图来代表各种科学利益,并将它们作为特征转化网络的输入来指导潜在的生成。我们通过与自动编码器一起训练的无损熵编码算法,进一步降低了潜在尺寸,从而提高了存储和存储效率。我们通过多个科学可视化应用程序的数据进行定性和定量评估我们方法产生的潜图的有效性和效率。
translated by 谷歌翻译
数字双胞胎已成为优化工程产品和系统性能的关键技术。高保真数值模拟构成了工程设计的骨干,从而准确地了解了复杂系统的性能。但是,大规模的,动态的非线性模型需要大量的计算资源,并且对于实时数字双胞胎应用而言是高度的。为此,采用了减少的订单模型(ROM),以近似高保真解决方案,同时准确捕获身体行为的主要方面。本工作提出了一个新的机器学习(ML)平台,用于开发ROM,以处理处理瞬态非线性偏微分方程的大规模数值问题。我们的框架被称为$ \ textit {fastsvd-ml-rom} $,利用$ \ textit {(i)} $单数值分解(SVD)更新方法,以计算多效性解决方案的线性子空间仿真过程,$ \ textIt {(ii)} $降低非线性维度的卷积自动编码器,$ \ textit {(iii)} $ feed-feed-feed-forderward神经网络以将输入参数映射到潜在的空间,以及$ \ textit {(iv) )} $长的短期内存网络,以预测和预测参数解决方案的动力学。 $ \ textit {fastsvd-ml-rom} $框架的效率用于2D线性对流扩散方程,圆柱周围的流体问题以及动脉段内的3D血流。重建结果的准确性证明了鲁棒性,并评估了所提出的方法的效率。
translated by 谷歌翻译
相位场建模是一种有效但计算昂贵的方法,用于捕获材料中的中尺度形态和微观结构演化。因此,需要快速且可推广的替代模型来减轻计算征税流程的成本,例如在材料的优化和设计中。尖锐相边界的存在所产生的物理现象的固有不连续性使替代模型的训练繁琐。我们开发了一个框架,该框架将卷积自动编码器架构与深神经操作员(DeepOnet)集成在一起,以了解两相混合物的动态演化,并加速预测微结构演变的时间。我们利用卷积自动编码器在低维的潜在空间中提供微观结构数据的紧凑表示。 DeepOnet由两个子网络组成,一个用于编码固定数量的传感器位置(分支网)的输入函数,另一个用于编码输出功能的位置(TRUNK NET),了解微观结构Evolution的中尺度动力学从自动编码器潜在空间。然后,卷积自动编码器的解码器部分从deponet预测中重建了时间进化的微结构。然后,可以使用训练有素的DeepOnet架构来替换插值任务中的高保真相位数值求解器或在外推任务中加速数值求解器。
translated by 谷歌翻译
科学机器学习的进步改善了现代计算科学和工程应用。数据驱动的方法(例如动态模式分解(DMD))可以从动态系统生成的时空数据中提取相干结构,并推断上述系统的不同方案。时空数据作为快照,每次瞬间包含空间信息。在现代工程应用中,高维快照的产生可能是时间和/或资源要求。在本研究中,我们考虑了在大型数值模拟中增强DMD工作流程的两种策略:(i)快照压缩以减轻磁盘压力; (ii)使用原位可视化图像在运行时重建动力学(或部分)。我们通过两个3D流体动力学模拟评估我们的方法,并考虑DMD重建解决方案。结果表明,快照压缩大大减少了所需的磁盘空间。我们已经观察到,损耗的压缩将存储降低了几乎$ 50 \%$,而信号重建和其他关注数量的相对错误则较低。我们还使用原位可视化工具将分析扩展到了直接生成的数据,在运行时生成状态向量的图像文件。在大型模拟中,快照的产生可能足够慢,可以使用批处理算法进行推理。流DMD利用增量SVD算法,并随着每个新快照的到来更新模式。我们使用流式DMD来重建原位生成的图像的动力学。我们证明此过程是有效的,并且重建的动力学是准确的。
translated by 谷歌翻译
动力学受部分微分方程(PDE)控制的物理系统在许多领域(从工程设计到天气预报)中找到了应用。从此类PDE中获取解决方案的过程对于大规模和参数化问题的计算昂贵。在这项工作中,使用LSTM和TCN等时间表预测开发的深度学习技术,或用于为CNN等空间功能提取而开发的,用于建模系统动力学,以占主导问题。这些模型将输入作为从PDE获得的连续时间步长的一系列高保真矢量解,并预测使用自动回归的后续时间步长的解决方案;从而减少获得此类高保真解决方案所需的计算时间和功率。这些模型经过数值基准测试(1D汉堡的方程式和Stoker的大坝断裂问题),以评估长期预测准确性,甚至在训练域之外(外推)。在向预测模型输入之前,使用非侵入性的降低订购建模技术(例如深度自动编码网络)来压缩高保真快照,以减少在线和离线阶段的复杂性和所需的计算。深层合奏被用来对预测模型进行不确定性量化,该模型提供了有关认知不确定性导致预测方差的信息。
translated by 谷歌翻译
基于自动编码器的降低订购建模(ROM)最近由于其捕获基本非线性特征的能力而引起了极大的关注。但是,两个关键缺点严重破坏了其对各种物理应用的可伸缩性:纠缠和无法解释的潜在变量(LVS)和潜在空间维度的眼罩确定。在这方面,本研究提出了仅使用$ \ beta $ - variational AutoCododer提取的可解释和信息密集型LV的物理感知ROM,在本文中被称为物理意识的LV。为了提取这些LV,它们的独立性和信息强度在二维跨音速基准问题中进行了定量检查。然后,对物理意识的LV的物理含义进行了彻底的研究,我们确认,使用适当的超参数$ \ beta $,它们实际上对应于训练数据集的生成因子,马赫数和攻击角度。据作者所知,我们的工作是第一个实际上确认$ \ beta $ variational自动编码器可以自动提取应用物理领域的物理生成因子。最后,将仅利用物理意识的LVS的物理学意识ROM与常规ROM进行了比较,并且成功验证了其有效性和效率。
translated by 谷歌翻译
Generative Adversarial Networks (GANs) have received wide acclaim among the machine learning (ML) community for their ability to generate realistic 2D images. ML is being applied more often to complex problems beyond those of computer vision. However, current frameworks often serve as black boxes and lack physics embeddings, leading to poor ability in enforcing constraints and unreliable models. In this work, we develop physics embeddings that can be stringently imposed, referred to as hard constraints, in the neural network architecture. We demonstrate their capability for 3D turbulence by embedding them in GANs, particularly to enforce the mass conservation constraint in incompressible fluid turbulence. In doing so, we also explore and contrast the effects of other methods of imposing physics constraints within the GANs framework, especially penalty-based physics constraints popular in literature. By using physics-informed diagnostics and statistics, we evaluate the strengths and weaknesses of our approach and demonstrate its feasibility.
translated by 谷歌翻译
在本文中,提出了一种新的深度学习框架,用于血管流动的时间超分辨率模拟,其中从低时间分辨率的流动模拟结果产生高时分分辨时变血管流动模拟。在我们的框架中,Point-Cloud用于表示复杂的血管模型,建议电阻 - 时间辅助表模型用于提取时变流场的时间空间特征,最后我们可以重建高精度和高精度高分辨率流场通过解码器模块。特别地,从速度的矢量特征提出了速度的幅度损失和方向损失。并且这两个度量的组合构成了网络培训的最终损失函数。给出了几个例子来说明血管流动时间超分辨率模拟所提出的框架的有效和效率。
translated by 谷歌翻译
几个世纪以来,科学家一直观察到自然要了解支配物理世界的法律。将观察变成身体理解的传统过程很慢。构建和测试不完善的模型以解释数据中的关系。强大的新算法可以使计算机通过观察图像和视频来学习物理。受这个想法的启发,而不是使用物理量训练机器学习模型,我们使用了图像,即像素信息。对于这项工作和概念证明,感兴趣的物理学是风向的空间模式。这些现象包括风水沙丘和火山灰沉积,野火烟雾和空气污染羽状的特征。我们使用空间沉积模式的计算机模型仿真来近似假设成像设备的图像,其输出为红色,绿色和蓝色(RGB)颜色图像,通道值范围为0到255。在本文中,我们探索深度卷积神经网络基于基于风向的空间模式的关系,通常在地球科学中发生,并降低其尺寸。使用编码器降低数据维度大小,可以训练将地理和气象标量输入数量连接到编码空间的深层,完全连接的神经网络模型。一旦实现了这一目标,使用解码器重建了完整的空间模式。我们在污染源的空间沉积图像上证明了这种方法,其中编码器将维度压缩到原始大小的0.02%,并且测试数据上的完整预测模型性能的精度为92%。
translated by 谷歌翻译