Neural networks have revolutionized the area of artificial intelligence and introduced transformative applications to almost every scientific field and industry. However, this success comes at a great price; the energy requirements for training advanced models are unsustainable. One promising way to address this pressing issue is by developing low-energy neuromorphic hardware that directly supports the algorithm's requirements. The intrinsic non-volatility, non-linearity, and memory of spintronic devices make them appealing candidates for neuromorphic devices. Here we focus on the reservoir computing paradigm, a recurrent network with a simple training algorithm suitable for computation with spintronic devices since they can provide the properties of non-linearity and memory. We review technologies and methods for developing neuromorphic spintronic devices and conclude with critical open issues to address before such devices become widely used.
translated by 谷歌翻译
最近已经提出了与紧急磁化动态的互连磁纳环阵列用于储层计算应用,但是对于它们进行计算有用,必须可以优化其动态响应。在这里,我们使用一种现象学模型来证明可以通过调整使用旋转磁场将数据的缩放和输入速率控制到系统中的超级参数来优化这些储存器。我们使用任务独立的指标来评估每组上的这些超参数的戒指的计算能力,并展示这些指标如何直接关联与口头和书面识别任务中的性能相关联。然后,我们通过扩展储库的输出来包括环阵列磁态的多个并发度量,可以进一步改善这些度量。
translated by 谷歌翻译
基于旋转扭矩振荡器的复合值Hopfield网络模拟可以恢复相位编码的图像。存储器增强逆变器的序列提供可调谐延迟元件,通过相位转换振荡器的振荡输出来实现复合权重的可调延迟元件。伪逆培训足以存储在一组192个振荡器中,至少代表16 $ \倍数为12个像素图像。恢复图像所需的能量取决于所需的错误级别。对于这里考虑的振荡器和电路,来自理想图像的5%均方方偏差需要大约5 00美元$ S并消耗大约130 NJ。模拟显示,当振荡器的谐振频率可以调整为具有小于10 ^ {-3} $的分数扩展时,网络功能良好,具体取决于反馈的强度。
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
量子点(QDS)阵列是一个有前途的候选系统,实现可扩展的耦合码头系统,并用作量子计算机的基本构建块。在这种半导体量子系统中,设备现在具有数十个,必须仔细地将系统仔细设置为单电子制度并实现良好的Qubit操作性能。必要点位置的映射和栅极电压的电荷提出了一个具有挑战性的经典控制问题。随着QD Qubits越来越多的QD Qubits,相关参数空间的增加充分以使启发式控制不可行。近年来,有一个相当大的努力自动化与机器学习(ML)技术相结合的基于脚本的算法。在这一讨论中,我们概述了QD器件控制自动化进展的全面概述,特别强调了在二维电子气体中形成的基于硅和GaAs的QD。将基于物理的型号与现代数值优化和ML相结合,证明在屈服高效,可扩展的控制方面已经证明非常有效。通过计算机科学和ML的理论,计算和实验努力的进一步整合,在推进半导体和量子计算平台方面具有巨大的潜力。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
储层计算(RC)已经获得了最近的兴趣,因为无需培训储层权重,从而实现了极低的资源消费实施,这可能会对边缘计算和现场学习的影响有严格的限制。理想情况下,天然硬件储层应被动,最小,表现力和可行性。迄今为止,拟议的硬件水库很难满足所有这些标准。因此,我们建议通过利用偶极耦合,沮丧的纳米磁体的被动相互作用来符合所有这些标准的水库。挫败感大大增加了稳定的储层国家的数量,丰富了储层动力学,因此这些沮丧的纳米磁体满足了天然硬件储层的所有标准。同样,我们提出了具有低功率互补金属氧化物半导体(CMOS)电路的完全沮丧的纳米磁管储层计算(NMRC)系统与储层接口,并且初始实验结果证明了储层的可行性。在三个单独的任务上,通过微磁模拟对储层进行了验证。将所提出的系统与CMOS Echo-State网络(ESN)进行了比较,表明总体资源减少了10,000,000多倍,这表明,由于NMRC自然是被动的,而且最小的可能是具有极高资源效率的潜力。
translated by 谷歌翻译
尖峰神经网络(SNN)提供了一个新的计算范式,能够高度平行,实时处理。光子设备是设计与SNN计算范式相匹配的高带宽,平行体系结构的理想选择。 CMO和光子元件的协整允许将低损耗的光子设备与模拟电子设备结合使用,以更大的非线性计算元件的灵活性。因此,我们在整体硅光子学(SIPH)过程上设计和模拟了光电尖峰神经元电路,该过程复制了超出泄漏的集成和火(LIF)之外有用的尖峰行为。此外,我们探索了两种学习算法,具有使用Mach-Zehnder干涉法(MZI)网格作为突触互连的片上学习的潜力。实验证明了随机反向传播(RPB)的变体,并在简单分类任务上与标准线性回归的性能相匹配。同时,将对比性HEBBIAN学习(CHL)规则应用于由MZI网格组成的模拟神经网络,以进行随机输入输出映射任务。受CHL训练的MZI网络的性能比随机猜测更好,但不符合理想神经网络的性能(没有MZI网格施加的约束)。通过这些努力,我们证明了协调的CMO和SIPH技术非常适合可扩展的SNN计算体系结构的设计。
translated by 谷歌翻译
Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning.
translated by 谷歌翻译
This chapter sheds light on the synaptic organization of the brain from the perspective of computational neuroscience. It provides an introductory overview on how to account for empirical data in mathematical models, implement them in software, and perform simulations reflecting experiments. This path is demonstrated with respect to four key aspects of synaptic signaling: the connectivity of brain networks, synaptic transmission, synaptic plasticity, and the heterogeneity across synapses. Each step and aspect of the modeling and simulation workflow comes with its own challenges and pitfalls, which are highlighted and addressed in detail.
translated by 谷歌翻译
人工智能革命(AI)提出了巨大的存储和数据处理要求。大量的功耗和硬件开销已成为构建下一代AI硬件的主要挑战。为了减轻这种情况,神经形态计算引起了极大的关注,因为它在功耗非常低的功能方面具有出色的数据处理能力。尽管无情的研究已经进行了多年,以最大程度地减少神经形态硬件的功耗,但我们离达到人脑的能源效率还有很长的路要走。此外,设计复杂性和过程变化阻碍了当前神经形态平台的大规模实现。最近,由于其出色的速度和功率指标,在低温温度中实施神经形态计算系统的概念引起了人们的兴趣。可以设计几种低温装置,可作为具有超低功率需求的神经形态原始设备。在这里,我们全面回顾了低温神经形态硬件。我们将现有的低温神经形态硬件分类为几个分层类别,并根据关键性能指标绘制比较分析。我们的分析简洁地描述了相关电路拓扑的操作,并概述了最先进的技术平台遇到的优势和挑战。最后,我们提供了见解,以规避这些挑战,以实现未来的研究发展。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
评估能源转型和能源市场自由化对资源充足性的影响是一种越来越重要和苛刻的任务。能量系统的上升复杂性需要足够的能量系统建模方法,从而提高计算要求。此外,随着复杂性,同样调用概率评估和场景分析同样增加不确定性。为了充分和高效地解决这些各种要求,需要来自数据科学领域的新方法来加速当前方法。通过我们的系统文献综述,我们希望缩小三个学科之间的差距(1)电力供应安全性评估,(2)人工智能和(3)实验设计。为此,我们对所选应用领域进行大规模的定量审查,并制作彼此不同学科的合成。在其他发现之外,我们使用基于AI的方法和应用程序的AI方法和应用来确定电力供应模型的复杂安全性的元素,并作为未充分涵盖的应用领域的储存调度和(非)可用性。我们结束了推出了一种新的方法管道,以便在评估电力供应安全评估时充分有效地解决当前和即将到来的挑战。
translated by 谷歌翻译
主动位置估计(APE)是使用一个或多个传感平台本地化一个或多个目标的任务。 APE是搜索和拯救任务,野生动物监测,源期限估计和协作移动机器人的关键任务。 APE的成功取决于传感平台的合作水平,他们的数量,他们的自由度和收集的信息的质量。 APE控制法通过满足纯粹剥削或纯粹探索性标准,可以实现主动感测。前者最大限度地减少了位置估计的不确定性;虽然后者驱动了更接近其任务完成的平台。在本文中,我们定义了系统地分类的主要元素,并批判地讨论该域中的最新状态。我们还提出了一个参考框架作为对截图相关的解决方案的形式主义。总体而言,本调查探讨了主要挑战,并设想了本地化任务的自主感知系统领域的主要研究方向。促进用于搜索和跟踪应用的强大主动感测方法的开发也有益。
translated by 谷歌翻译
低成本毫米波(MMWAVE)通信和雷达设备的商业可用性开始提高消费市场中这种技术的渗透,为第五代(5G)的大规模和致密的部署铺平了道路(5G) - 而且以及6G网络。同时,普遍存在MMWAVE访问将使设备定位和无设备的感测,以前所未有的精度,特别是对于Sub-6 GHz商业级设备。本文使用MMWAVE通信和雷达设备在基于设备的定位和无设备感应中进行了现有技术的调查,重点是室内部署。我们首先概述关于MMWAVE信号传播和系统设计的关键概念。然后,我们提供了MMWaves启用的本地化和感应方法和算法的详细说明。我们考虑了在我们的分析中的几个方面,包括每个工作的主要目标,技术和性能,每个研究是否达到了一定程度的实现,并且该硬件平台用于此目的。我们通过讨论消费者级设备的更好算法,密集部署的数据融合方法以及机器学习方法的受过教育应用是有前途,相关和及时的研究方向的结论。
translated by 谷歌翻译
基于量子的通信中的当前技术将量子数据的新集成与经典数据进行混合处理。但是,这些技术的框架仅限于单个经典或量子任务,这限制了它们在近期应用中的灵活性。我们建议在需要经典和量子输入的计算任务中利用量子储存器处理器来利用量子动力学。该模拟处理器包括一个量子点网络,其中量子数据被入射到网络中,并且经典数据通过一个连贯的字段刺激了网络进行编码。我们执行量子断层扫描和经典通道非线性均衡的多任务应用。有趣的是,可以通过对经典数据的反馈控制以闭环方式进行断层扫描。因此,如果经典输入来自动力学系统,则将该系统嵌入封闭环中,即使访问对外部经典输入的访问被中断也可以处理混合处理。最后,我们证明准备量子去极化通道是一种用于量子数据处理的新型量子机学习技术。
translated by 谷歌翻译
随着Terahertz(THZ)信号产生和辐射方法的最新进展,关节通信和传感应用正在塑造无线系统的未来。为此,预计将在用户设备设备上携带THZ光谱,以识别感兴趣的材料和气态组件。 THZ特异性的信号处理技术应补充这种对THZ感应的重新兴趣,以有效利用THZ频带。在本文中,我们介绍了这些技术的概述,重点是信号预处理(标准的正常差异归一化,最小值 - 最大归一化和Savitzky-Golay滤波),功能提取(主成分分析,部分最小二乘,t,T,T部分,t部分,t部分正方形,T - 分布的随机邻居嵌入和非负矩阵分解)和分类技术(支持向量机器,k-nearest邻居,判别分析和天真的贝叶斯)。我们还通过探索他们在THZ频段的有希望的传感能力来解决深度学习技术的有效性。最后,我们研究了在联合通信和传感的背景下,研究方法的性能和复杂性权衡;我们激励相应的用例,并在该领域提供未来的研究方向。
translated by 谷歌翻译