病理学家通过检查载玻片上的针头活检的组织来诊断和坡度前列腺癌。癌症的严重程度和转移风险取决于格里森等级,这是基于前列腺癌腺体的组织和形态的分数。为了进行诊断检查,病理学家首先将腺体定位在整个活检核心中,如果发现癌症 - 他们分配了Gleason等级。尽管严格的诊断标准,但这种耗时的过程仍会出现错误和明显的观察者间变异性。本文提出了一个自动化的工作流程,该工作流程遵循病理学家的\ textit {modus operandi},对整个幻灯片图像(WSI)的多尺度斑块进行隔离和分类。分别对基质和腺体边界; (2)分类器网络以高放大倍数将良性与癌症分离; (3)另一个分类器可以在低放大倍率下预测每个癌症的等级。总的来说,此过程为前列腺癌分级提供了一种特定于腺体的方法,我们将其与其他基于机器学习的分级方法进行比较。
translated by 谷歌翻译
数据分析方法的组合,提高计算能力和改进的传感器可以实现定量颗粒状,基于细胞的分析。我们描述了与组织解释和调查AI方法有关的丰富应用挑战集,目前用于应对这些挑战。我们专注于一类针对性的人体组织分析 - 组织病理学 - 旨在定量表征疾病状态,患者结果预测和治疗转向。
translated by 谷歌翻译
Prostate cancer is the most common cancer in men worldwide and the second leading cause of cancer death in the United States. One of the prognostic features in prostate cancer is the Gleason grading of histopathology images. The Gleason grade is assigned based on tumor architecture on Hematoxylin and Eosin (H&E) stained whole slide images (WSI) by the pathologists. This process is time-consuming and has known interobserver variability. In the past few years, deep learning algorithms have been used to analyze histopathology images, delivering promising results for grading prostate cancer. However, most of the algorithms rely on the fully annotated datasets which are expensive to generate. In this work, we proposed a novel weakly-supervised algorithm to classify prostate cancer grades. The proposed algorithm consists of three steps: (1) extracting discriminative areas in a histopathology image by employing the Multiple Instance Learning (MIL) algorithm based on Transformers, (2) representing the image by constructing a graph using the discriminative patches, and (3) classifying the image into its Gleason grades by developing a Graph Convolutional Neural Network (GCN) based on the gated attention mechanism. We evaluated our algorithm using publicly available datasets, including TCGAPRAD, PANDA, and Gleason 2019 challenge datasets. We also cross validated the algorithm on an independent dataset. Results show that the proposed model achieved state-of-the-art performance in the Gleason grading task in terms of accuracy, F1 score, and cohen-kappa. The code is available at https://github.com/NabaviLab/Prostate-Cancer.
translated by 谷歌翻译
组织学图像中核和腺体的实例分割是用于癌症诊断,治疗计划和生存分析的计算病理学工作流程中的重要一步。随着现代硬件的出现,大规模质量公共数据集的最新可用性以及社区组织的宏伟挑战已经看到了自动化方法的激增,重点是特定领域的挑战,这对于技术进步和临床翻译至关重要。在这项调查中,深入分析了过去五年(2017-2022)中发表的原子核和腺体实例细分的126篇论文,进行了深入分析,讨论了当前方法的局限性和公开挑战。此外,提出了潜在的未来研究方向,并总结了最先进方法的贡献。此外,还提供了有关公开可用数据集的概括摘要以及关于说明每种挑战的最佳性能方法的巨大挑战的详细见解。此外,我们旨在使读者现有研究的现状和指针在未来的发展方向上开发可用于临床实践的方法,从而可以改善诊断,分级,预后和癌症的治疗计划。据我们所知,以前没有工作回顾了朝向这一方向的组织学图像中的实例细分。
translated by 谷歌翻译
数字病理学是现代医学中最重要的发展之一。病理检查是医疗方案的黄金标准,并在诊断中发挥基本作用。最近,随着数字扫描仪的出现,现在可以将组织组织病理学载玻片数字化并作为数字图像存储。结果,数字化组织病理组织可用于计算机辅助图像分析程序和机器学习技术。核的检测和分割是癌症诊断中的一些基本步骤。最近,深度学习已被用于核细胞分割。然而,核细胞分割的深度学习方法中的一个问题是缺乏斑块的信息。本文提出了深入的基于学习的核细胞分割方法,这解决了补丁边界地区误入歧途的问题。我们使用本地和全局修补程序来预测最终的分割图。多器官组织病理学数据集上的实验结果表明,我们的方法优于基线核细胞分割和流行分割模型。
translated by 谷歌翻译
在病理样本的全坡度图像(WSI)中注释癌区域在临床诊断,生物医学研究和机器学习算法开发中起着至关重要的作用。但是,产生详尽而准确的注释是劳动密集型,具有挑战性和昂贵的。仅绘制粗略和近似注释是一项容易得多的任务,成本较小,并且可以减轻病理学家的工作量。在本文中,我们研究了在数字病理学中完善这些近似注释以获得更准确的问题的问题。以前的一些作品探索了从这些不准确的注释中获得机器学习模型,但是很少有人解决改进问题,在这些问题中,应该明确识别和纠正错误标签的区域,并且所有这些都需要大量的培训样本(通常很大) 。我们提出了一种名为标签清洁多个实例学习(LC-MIL)标签的方法,可在不需要外部培训数据的情况下对单个WSI进行粗略注释。从WSI裁剪的带有不准确标签的贴片在多个实例学习框架内共同处理,从而减轻了它们对预测模型的影响并完善分割。我们对具有乳腺癌淋巴结转移,肝癌和结直肠癌样品的异质WSI进行的实验表明,LC-MIL显着完善了粗糙的注释,即使从单个幻灯片中学习,LC-MIL也优于最先进的替代方案。此外,我们证明了拟议方法如何有效地完善和改进病理学家绘制的真实注释。所有这些结果表明,LC-MIL是一种有前途的,轻巧的工具,可提供从粗糙注释的病理组中提供细粒的注释。
translated by 谷歌翻译
用于计算病理(CPATH)的深度分割模型的发展可以帮助培养可解释的形态生物标志物的调查。然而,这些方法的成功存在主要瓶颈,因为监督的深度学习模型需要丰富的准确标记数据。该问题在CPATH领域加剧,因为详细注释的产生通常需要对病理学家的输入能够区分不同的组织构建体和核。手动标记核可能不是收集大规模注释数据集的可行方法,特别是当单个图像区域可以包含数千个不同的单元时。但是,仅依靠自动生成注释将限制地面真理的准确性和可靠性。因此,为了帮助克服上述挑战,我们提出了一种多级注释管道,以使大规模数据集进行用于组织学图像分析,具有病理学家in-循环的细化步骤。使用本市管道,我们生成最大的已知核实例分段和分类数据集,其中包含近百万分之一的H&E染色的结肠组织中标记的细胞核。我们发布了DataSet并鼓励研究社区利用它来推动CPATH中下游小区模型的发展。
translated by 谷歌翻译
乳腺癌是女性最常见的恶性肿瘤,每年负责超过50万人死亡。因此,早期和准确的诊断至关重要。人类专业知识是诊断和正确分类乳腺癌并定义适当的治疗,这取决于评价不同生物标志物如跨膜蛋白受体HER2的表达。该评估需要几个步骤,包括免疫组织化学或原位杂交等特殊技术,以评估HER2状态。通过降低诊断中的步骤和人类偏差的次数的目标,赫洛挑战是组织的,作为第16届欧洲数字病理大会的并行事件,旨在自动化仅基于苏木精和曙红染色的HER2地位的评估侵袭性乳腺癌的组织样本。评估HER2状态的方法是在全球21个团队中提出的,并通过一些提议的方法实现了潜在的观点,以推进最先进的。
translated by 谷歌翻译
肾细胞癌(RCC)是一种常见的癌症,随着临床行为的变化。懒惰的RCC通常是低级的,没有坏死,可以在没有治疗的情况下监测。激进的RCC通常是高级的,如果未及时检测和治疗,可能会导致转移和死亡。虽然大多数肾脏癌在CT扫描中都检测到,但分级是基于侵入性活检或手术的组织学。确定对CT图像的侵略性在临床上很重要,因为它促进了风险分层和治疗计划。这项研究旨在使用机器学习方法来识别与病理学特征相关的放射学特征,以促进评估CT图像而不是组织学上的癌症侵略性。本文提出了一种新型的自动化方法,即按区域(Corrfabr)相关的特征聚集,用于通过利用放射学和相应的不对齐病理学图像之间的相关性来对透明细胞RCC进行分类。 CORRFABR由三个主要步骤组成:(1)特征聚集,其中从放射学和病理图像中提取区域级特征,(2)融合,放射学特征与病理特征相关的放射学特征在区域级别上学习,并且(3)在其中预测的地方学到的相关特征用于仅使用CT作为输入来区分侵略性和顽固的透明细胞RCC。因此,在训练过程中,Corrfabr从放射学和病理学图像中学习,但是在没有病理图像的情况下,Corrfabr将使用CORFABR将侵略性与顽固的透明细胞RCC区分开。 Corrfabr仅比放射学特征改善了分类性能,二进制分类F1分数从0.68(0.04)增加到0.73(0.03)。这证明了将病理疾病特征纳入CT图像上透明细胞RCC侵袭性的分类的潜力。
translated by 谷歌翻译
使用深度学习模型从组织学数据中诊断癌症提出了一些挑战。这些图像中关注区域(ROI)的癌症分级和定位通常依赖于图像和像素级标签,后者需要昂贵的注释过程。深度弱监督的对象定位(WSOL)方法为深度学习模型的低成本培训提供了不同的策略。仅使用图像级注释,可以训练这些方法以对图像进行分类,并为ROI定位进行分类类激活图(CAM)。本文综述了WSOL的​​最先进的DL方法。我们提出了一种分类法,根据模型中的信息流,将这些方法分为自下而上和自上而下的方法。尽管后者的进展有限,但最近的自下而上方法目前通过深层WSOL方法推动了很多进展。早期作品的重点是设计不同的空间合并功能。但是,这些方法达到了有限的定位准确性,并揭示了一个主要限制 - 凸轮的不足激活导致了高假阴性定位。随后的工作旨在减轻此问题并恢复完整的对象。评估和比较了两个具有挑战性的组织学数据集的分类和本地化准确性,对我们的分类学方法进行了评估和比较。总体而言,结果表明定位性能差,特别是对于最初设计用于处理自然图像的通用方法。旨在解决组织学数据挑战的方法产生了良好的结果。但是,所有方法都遭受高假阳性/阴性定位的影响。在组织学中应用深WSOL方法的应用是四个关键的挑战 - 凸轮的激活下/过度激活,对阈值的敏感性和模型选择。
translated by 谷歌翻译
乳腺癌是女性可能发生的最严重的癌症之一。通过分析组织学图像(HIS)来自动诊断乳腺癌对患者及其预后很重要。他的分类为临床医生提供了对疾病的准确了解,并使他们可以更有效地治疗患者。深度学习(DL)方法已成功地用于各种领域,尤其是医学成像,因为它们有能力自动提取功能。这项研究旨在使用他的乳腺癌对不同类型的乳腺癌进行分类。在这项研究中,我们提出了一个增强的胶囊网络,该网络使用RES2NET块和四个额外的卷积层提取多尺度特征。此外,由于使用了小的卷积内核和RES2NET块,因此所提出的方法具有较少的参数。结果,新方法的表现优于旧方法,因为它会自动学习最佳功能。测试结果表明该模型的表现优于先前的DL方法。
translated by 谷歌翻译
由于形态的相似性,皮肤肿瘤的组织学切片分化为个体亚型可能具有挑战性。最近,基于深度学习的方法证明了它们在这方面支持病理学家的潜力。但是,这些监督算法中的许多都需要大量的注释数据才能进行稳健开发。我们提供了一个公开可用的数据集,该数据集是七个不同的犬皮肤肿瘤的350张全滑图像,其中有13种组织学类别的12,424个多边形注释,包括7种皮肤肿瘤亚型。在评估者间实验中,我们显示了提供的标签的高稠度,尤其是对于肿瘤注释。我们通过训练深层神经网络来进一步验证数据集,以完成组织分割和肿瘤亚型分类的任务。我们的肿瘤尤其是0.7047的类平均Jaccard系数为0.7047,尤其是0.9044。对于分类,我们达到了0.9857的幻灯片级准确性。由于犬皮肤肿瘤对人肿瘤具有各种组织学同源性,因此该数据集的附加值不限于兽医病理学,而是扩展到更一般的应用领域。
translated by 谷歌翻译
居住在美国的每个妇女在8次发育侵袭性乳腺癌的可能性下有大约1。有丝分裂细胞计数是评估乳腺癌侵袭性或等级最常见的测试之一。在该预后,必须通过病理学家使用高分辨率显微镜检查组织病理学图像以计算细胞。不幸的是,可以是一种完整的任务,可重复性差,特别是对于非专家来说。最近深入学习网络适用于能够自动定位这些感兴趣区域的医学应用。然而,这些基于区域的网络缺乏利用通常用作唯一检测方法的完整图像CNN产生的分割特征的能力。因此,所提出的方法利用更快的RCNN进行对象检测,同时使用RGB图像特征的UNET产生的分割特征,以实现在Mitos-Atypia 2014分数上的F分数为0.508,计数数据集,优于最先进的攻击方法。
translated by 谷歌翻译
尽管U-NET体系结构已广泛用于分割医学图像,但我们解决了这项工作中的两个缺点。首先,当分割目标区域的形状和尺寸显着变化时,香草U-NET的精度会降低。即使U-NET已经具有在各种尺度上分析特征的能力,我们建议在U-NET编码器的每个卷积模块中明确添加多尺度特征图,以改善组织学图像的分割。其次,当监督学习的注释嘈杂或不完整时,U-NET模型的准确性也会受到影响。由于人类专家在非常精确,准确地识别和描述所有特定病理的所有实例的固有困难,因此可能发生这种情况。我们通过引入辅助信心图来应对这一挑战,该辅助信心图较少强调给定目标区域的边界。此外,我们利用深网的引导属性智能地解决了丢失的注释问题。在我们对乳腺癌淋巴结私有数据集的实验中,主要任务是分割生发中心和窦性组织细胞增多症,我们观察到了基于两个提出的增强的U-NET基线的显着改善。
translated by 谷歌翻译
X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications and covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets. We also highlight some drawbacks in the published research and give recommendations for future research in computer vision-based X-ray analysis.
translated by 谷歌翻译
数字整体幻灯片图像包含大量信息,为开发自动图像分析工具提供了强大的动力。在数字病理领域的各种任务方面,特别是深层神经网络具有很高的潜力。但是,典型的深度学习算法除了大量图像数据之外还需要(手动)注释以实现有效的培训,这是一个限制。多个实例学习在没有完全注释的数据的情况下展示了一个强大的工具,可在情况下学习深神网络。这些方法在该域中特别有效,因为通常通常会捕获完整的整个幻灯片图像的标签,而用于斑块,区域或像素的标签则没有。这种潜力已经导致大量出版物,在过去三年中发表了多数。除了从医学的角度使用数据的可用性和高度动机外,功能强大的图形处理单元的可用性在该领域表现出加速器。在本文中,我们概述了广泛有效地使用了使用的深层实例学习方法,最新进展以及批判性地讨论剩余挑战和未来潜力的概念。
translated by 谷歌翻译
乳腺癌是全球女性中最常见的癌症。乳腺癌的早期诊断可以显着提高治疗效率。由于其可靠性,准确性和负担能力,计算机辅助诊断(CAD)系统被广泛采用。乳腺癌诊断有不同的成像技术。本文使用的最准确的是组织病理学。深度传输学习被用作提议的CAD系统功能提取器的主要思想。尽管在这项研究中已经测试了16个不同的预训练网络,但我们的主要重点是分类阶段。在所有测试的CNN中,具有剩余网络既有剩余网络既有剩余和启动网络的启发能力,均显示出最佳的特征提取能力。在分类阶段,Catboost,XGBOOST和LIGHTGBM的合奏提供了最佳的平均精度。 Breakhis数据集用于评估所提出的方法。 Breakhis在四个放大因素中包含7909个组织病理学图像(2,480个良性和5,429个恶性)。提出的方法的准确性(IRV2-CXL)使用70%的Breakhis数据集作为40倍,100X,200X和400X放大倍率的训练数据分别为96.82%,95.84%,97.01%和96.15%。大多数关于自动乳腺癌检测的研究都集中在特征提取上,这使我们参加了分类阶段。 IRV2-CXL由于使用软投票集合方法而显示出更好或可比较的结果,该合奏方法可以将Catboost,XGBoost和LightGBM的优势结合在一起。
translated by 谷歌翻译
如今,表面裂缝是公共基础设施的常见景象。最近的工作通过支持使用背景曲面裂缝的机器学习方法支持结构维护措施,解决了这个问题,使它们易于本地化。然而,这些方法的常见问题是创建一个良好的运行算法,训练数据需要详细地注释属于裂缝的像素。我们的工作提出了一种弱监督的方法,它利用CNN分类器来创建曲面裂纹分割图。我们使用此分类器通过使用其类激活映射和基于贴片的分类方法来创建粗糙的裂缝本地化地图,并用基于阈值的方法熔断器来融合它,以分段为大多数较暗的裂纹像素。分类器有助于抑制背景区域的噪声,这通常是通过标准阈值处理方法被错误地突出显示的裂缝。我们专注于我们的方法的易于实现,并且显示在几个表面裂纹数据集上表现良好,即使用于训练的唯一数据是简单的分类标签,也可以有效地进行分割裂缝。
translated by 谷歌翻译
仅使用诸如图像类标签的全局注释,弱监督学习方法允许CNN分类器共同分类图像,并产生与预测类相关的感兴趣区域。然而,在像素水平的任何引导下,这种方法可以产生不准确的区域。已知该问题与组织学图像更具挑战,而不是与天然自然的图像,因为物体不太突出,结构具有更多变化,并且前景和背景区域具有更强的相似之处。因此,用于CNNS的视觉解释的计算机视觉文献中的方法可能无法直接适用。在这项工作中,我们提出了一种基于复合损耗功能的简单而有效的方法,可利用完全消极样本的信息。我们的新损失函数包含两个补充项:第一次利用CNN分类器收集的积极证据,而第二个利用来自CNN分类器的积极证据,而第二个互联网将利用来自训练数据集的完全消极样本。特别是,我们用解码器装备预先训练的分类器,该解码器允许精制感兴趣的区域。利用相同的分类器来收集像素电平的正面和负证据,以培训解码器。这使得能够利用自然地发生在数据中的完全消极样本,而没有任何额外的监督信号,并且仅使用图像类作为监督。与几种相关方法相比,在冒号癌的公共基准GLAS和使用三种不同的骨架的CONELYON16基于乳腺癌的CAMELYON16基准测试,我们展示了我们方法引入的大量改进。我们的结果表明了使用负数和积极证据的好处,即,从分类器获得的效益以及在数据集中自然可用的那个。我们对这两种术语进行了消融研究。我们的代码公开提供。
translated by 谷歌翻译
组织病理学癌症诊断已经变得更加复杂,并且越来越多的活组织检查是大多数病理实验室的挑战。因此,用于评估组织病理学癌细胞的自动化方法的发展是值。在这项研究中,我们使用了来自挪威队的624个整个乳腺癌(WSIS)乳腺癌。我们提出了一种级联卷积神经网络设计,称为H2G-NET,用于千兆子宫内病理学图像的语义分割。该设计涉及使用PATCH-WISE方法的检测阶段,以及使用卷积AutoEncoder的细化阶段。为了验证设计,我们进行了一个消融研究,以评估所选组分在管道上对肿瘤分割的影响。指导分割,使用等级取样和深热敷细化,在分割组织病理学图像时被证明是有益的。当使用细化网络后,我们发现了一种显着的改进,以便后处理产生的肿瘤分割热量。整体最佳设计在90个WSIS的独立测试集中实现了0.933的骰子得分。该设计表现优于单分辨率方法,例如使用MobileNetv2(0.872)和低分辨率U-Net(0.874)的聚类引导,Patch-Wise高分辨率分类。此外,代表性X400 WSI的分割〜58秒,仅使用CPU。调查结果展示了利用细化网络来改善修补程序预测的潜力。解决方案是有效的,不需要重叠的补丁推断或合并。此外,我们表明,可以使用随机采样方案训练深度神经网络,该方案同时在多个不同的标签上余下,而无需在磁盘上存储斑块。未来的工作应涉及更有效的补丁生成和采样,以及改进的聚类。
translated by 谷歌翻译