风险评分广泛用于临床决策,通常由逻辑回归模型产生。基于机器学习的方法可以很好地识别重要的预测因子,但这种“黑匣子”变量选择限制解释性,并且从单个模型评估的可变重要性可以偏置。我们提出了一种强大而可解释的可解释的可解释选择方法,使用最近开发的福利可变重要性云(福利维奇)占模型的可变性。我们的方法评估和可视化了深入推理和透明变量选择的总变量贡献,并过滤出非重要贡献者来简化模型构建步骤。我们从可变贡献中获得了一个集合变量排名,这很容易与自动化和模块化的风险分数发生器,自动摩托,以方便的实现。在对早期死亡或意外再入住的研究中,福糖选定了6个候选变量中的6个,以创建一个良好的性能,从机器学习的排名到一个16变量模型具有类似的性能。
translated by 谷歌翻译
Current practice in interpretable machine learning often focuses on explaining the final model trained from data, e.g., by using the Shapley additive explanations (SHAP) method. The recently developed Shapley variable importance cloud (ShapleyVIC) extends the current practice to a group of "nearly optimal models" to provide comprehensive and robust variable importance assessments, with estimated uncertainty intervals for a more complete understanding of variable contributions to predictions. ShapleyVIC was initially developed for applications with traditional regression models, and the benefits of ShapleyVIC inference have been demonstrated in real-life prediction tasks using the logistic regression model. However, as a model-agnostic approach, ShapleyVIC application is not limited to such scenarios. In this work, we extend ShapleyVIC implementation for machine learning models to enable wider applications, and propose it as a useful complement to the current SHAP analysis to enable more trustworthy applications of these black-box models.
translated by 谷歌翻译
口服食物挑战(OFC)对于准确诊断患者的食物过敏至关重要。但是,患者不愿接受OFC,对于那些这样做的患者,在农村/社区医疗保健环境中,对过敏症患者的使用率有限。通过机器学习方法对OFC结果的预测可以促进在家中食品过敏原的删除,在OFC中改善患者和医师的舒适度,并通过最大程度地减少执行的OFC的数量来节省医疗资源。临床数据是从共同接受1,284个OFC的1,12例患者那里收集的,包括临床因素,包括血清特异性IgE,总IgE,皮肤刺测试(SPTS),症状,性别和年龄。使用这些临床特征,构建了机器学习模型,以预测花生,鸡蛋和牛奶挑战的结果。每种过敏原的最佳性能模型是使用凹入和凸内核(LUCCK)方法创建的,该方法在曲线(AUC)(AUC)下分别用于花生,鸡蛋和牛奶OFC预测为0.76、0.68和0.70, 。通过Shapley添加说明(SHAP)的模型解释表明,特定的IgE以及SPTS的Wheal和Flare值高度预测了OFC结果。该分析的结果表明,机器学习有可能预测OFC结果,并揭示了相关的临床因素进行进一步研究。
translated by 谷歌翻译
对世界各地的急诊部门(ED)服务的需求不断增长,特别是在Covid-19大流行下。风险三环在优先考虑最需要它们的患者的有限医疗资源方面发挥着至关重要的作用。最近,普遍使用电子健康记录(EHR)已经产生了大量的存储数据,伴随着开发可改善紧急护理的预测模型的巨大机会。然而,没有基于大型公共EHR的广泛接受的ED基准,这是新的研究人员可以轻松访问的基准。填补这种差距的成功可以使研究人员更快,方便地开始研究,而无需详细数据预处理,并促进不同研究和方法之间的比较。在本文中,基于医疗信息MART为重症监护IV急诊部门(MIMIC-IV-ED)数据库,我们提出了一款公共ED基准套件,并获得了从2011年到2019年的50万ED访问的基准数据集。三个ed已经介绍了基于预测任务(住院,关键结果和72小时ED Revisit),其中实施了各种流行的方法,从机器学习方法到临床评分系统进行了实施。他们的性能结果评估并进行了比较。我们的代码是开源,因此任何具有访问模仿-IV-ED的人都可以遵循相同的数据处理步骤,构建基准,并重现实验。本研究提供了洞察力,建议,以及未来研究人员的协议,以处理原始数据并快速建立紧急护理模型。
translated by 谷歌翻译
医学中的机器学习利用了财富的医疗保健数据来提取知识,促进临床决策,最终改善护理。然而,在缺乏人口统计分集的数据集上培训的ML模型可以在适用于不足的人群时产生次优绩效(例如少数民族,社会经济地位较低),因此延续了健康差异。在这项研究中,我们评估了四种型分类,以预测高氯血症 - 一种经常由ICU人口中的侵袭性流体给药的条件 - 并将其在种族,性别和保险亚组中进行比较。我们观察到,除了基于实验室的患者的模型性能之外,还要添加社会决定因素特征。 40个模型 - 亚组中的40分,亚组测试产生了显着不同的AUC分数,提示在将ML模型应用于社会决定簇子组时的差异。我们敦促未来的研究人员设计主动调整潜在偏见的模型,并包括他们研究中的子组报告。
translated by 谷歌翻译
背景:几项研究突出了考虑急性冠状动脉综合征(ACS)诊断和治疗性差异的重要性。然而,几乎已经研究了ACS子群中的性别特异性风险标志物。本研究旨在探索机器学习(ML)模型,以识别从电子健康记录(EHR)的公共数据库中的ACS子群体中的妇女和男性的住院死亡率标志。方法:从医疗信息MART中提取1,299名患有的ST升高的心肌梗死(Stemi)和2,820名非St-Expation心肌梗死患者进行重症监护(MIMIC)-III数据库。我们培训和验证了死亡率预测模型,并使用了可解释性技术来识别每个子群体的性别特异性标记。结果:基于极端梯度升压的模型(XGBoost)实现了最高性能:STEMI和AUC = 0.94(95 \%CI:0.80- 0.90)为nstemi。对于STEMI,女性的顶部标记是慢性肾功能衰竭,心率高,年龄超过70岁。对于男性来说,顶部标记是急性肾功能衰竭,高肌钙蛋白T水平,年龄超过75岁。然而,对于NStemi,女性的顶部标记较低,肌钙蛋白水平低,尿素水平高,80多年。对于男性来说,顶部标记是高心率,肌酐水平,年龄超过70岁。结论:我们的结果表明,通过解释ehrs培训的ML死亡率模型,通过解释ML死亡率模型显示不同ACS子群的可能的显着和相干的性别特异性风险标记。在妇女与男性的确定风险标志中观察到差异,突出了考虑性别特异性标记在实施更适当的治疗策略和更好的临床结果方面的重要性。
translated by 谷歌翻译
谵妄是急性急性发病脑功能障碍,在紧急情况下,与较高的死亡率有关。由于其演示和风险因素难以检测和监测,这取决于患者的潜在病情。在我们的研究中,我们旨在识别谵妄人口中的亚型,并建立使用医疗信息MART进行密集护理IV(MIMIC-IV)数据来检测谵妄的亚组特定的预测模型。我们表明谵妄存在于谵妄中。对于特定于组的预测模型,还观察到特征重要性的差异。我们的工作可以重新校准每个谵妄亚组的现有谵妄预测模型,并提高ICU或急诊部门患者的谵妄检测和监测的精度。
translated by 谷歌翻译
目的:Shapley添加说明(SHAP)是一种流行的事后技术,用于解释黑匣子模型。尽管已经对数据不平衡对预测模型的影响进行了广泛的研究,但在基于Shap的模型解释方面,它在很大程度上仍然未知。这项研究试图研究数据不平衡对深度学习模型的Shap解释的影响,并提出一种减轻这些影响的策略。材料和方法:我们建议在解释黑匣子模型时在背景中调整类别的类别,并在形状中进行解释数据。我们的数据平衡策略是构成背景数据和解释数据,同等分布。为了评估数据调整对模型解释的影响,我们建议将Beeswarm图用作定性工具,以识别“异常”解释伪像,并定量测试可变重要性和预测能力之间的一致性。我们在一项实证研究中证明了我们提出的方法,该研究使用医学信息MART(MIMIC-III)数据预测住院死亡率和多层概念。结果:使用数据平衡策略将使我们能够减少蜜蜂图图中的工件数量,从而减轻数据不平衡的负面影响。此外,通过平衡策略,来自相应重要性排名的顶级变量表明歧视能力得到了改善。讨论和结论:我们的发现表明,平衡的背景和解释数据可以帮助减少偏斜的数据分布引起的解释结果中的噪声,并提高可变重要性排名的可靠性。此外,这些平衡程序提高了在临床应用中识别出异常特征的患者方面的可能性。
translated by 谷歌翻译
医院住宿时间(LOS)是最重要的医疗保健度量之一,反映了医院的服务质量,有助于改善医院调度和管理。LOS预测有助于成本管理,因为留在医院的患者通常在资源受到严重限制的情况下这样做。在这项研究中,我们通过机器学习和统计方法审查了LOS预测的论文。我们的文献综述考虑了对卒中患者LOS预测的研究研究。一些受访的研究表明,作者达成了相应的结论。例如,患者的年龄被认为是一些研究中卒中患者LOS的重要预测因子,而其他研究则认为年龄不是一个重要因素。因此,在该领域需要额外的研究以进一步了解卒中患者LOS的预测因子。
translated by 谷歌翻译
目的:我们研究使用机器学习(ML)模型的可解释的累入预测,并在预测能力,稀疏性和公平性方面分析性能。与以前的作品不同,本研究列举了输出概率而不是二进制预测的可解释模型,并使用定量公平定义来评估模型。本研究还研究了模型是否可以横跨地理位置概括。方法:我们在佛罗里达州和肯塔基州的两个不同的刑事核查数据集上生成了黑盒和可解释的ML模型。我们将这些模型的预测性能和公平与目前用于司法系统中使用的两种方法进行了比较,以预测审前常规率:Arnold PSA和Compas。我们评估了所有模型的预测性能,可以在两次跨越两次预测六种不同类型犯罪的模型。结果:几种可解释的ML模型可以预测常规和黑盒ML模型,比Compas或Arnold PSA更准确。这些模型在实践中可能有用。类似于Arnold PSA,这些可解释模型中的一些可以作为一个简单的表格写入。其他可以使用一组可视化显示。我们的地理分析表明ML模型应分开培训,以便单独的位置并随时间更新。我们还为可​​解释模型提供了公平分析。结论:可解释的机器学习模型可以在预测准确性和公平性方面表现,也可以表现,也可以表现,也可以执行不可解释的方法和目前使用的风险评估尺度。机器学习模型对于单独培训,可以更准确地进行不同的位置,并保持最新。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
机器学习渗透到许多行业,这为公司带来了新的利益来源。然而,在人寿保险行业中,机器学习在实践中并未被广泛使用,因为在过去几年中,统计模型表明了它们的风险评估效率。因此,保险公司可能面临评估人工智能价值的困难。随着时间的流逝,专注于人寿保险行业的修改突出了将机器学习用于保险公司的利益以及通过释放数据价值带来的利益。本文回顾了传统的生存建模方法论,并通过机器学习技术扩展了它们。它指出了与常规机器学习模型的差异,并强调了特定实现在与机器学习模型家族中面对审查数据的重要性。在本文的补充中,已经开发了Python库。已经调整了不同的开源机器学习算法,以适应人寿保险数据的特殊性,即检查和截断。此类模型可以轻松地从该SCOR库中应用,以准确地模拟人寿保险风险。
translated by 谷歌翻译
快速准确地检测该疾病可以大大帮助减少任何国家医疗机构对任何大流行期间死亡率降低死亡率的压力。这项工作的目的是使用新型的机器学习框架创建多模式系统,该框架同时使用胸部X射线(CXR)图像和临床数据来预测COVID-19患者的严重程度。此外,该研究还提出了一种基于nom图的评分技术,用于预测高危患者死亡的可能性。这项研究使用了25种生物标志物和CXR图像,以预测意大利第一波Covid-19(3月至6月2020年3月至6月)在930名Covid-19患者中的风险。提出的多模式堆叠技术分别产生了89.03%,90.44%和89.03%的精度,灵敏度和F1分数,以识别低风险或高危患者。与CXR图像或临床数据相比,这种多模式方法可提高准确性6%。最后,使用多元逻辑回归的列线图评分系统 - 用于对第一阶段确定的高风险患者的死亡风险进行分层。使用随机森林特征选择模型将乳酸脱氢酶(LDH),O2百分比,白细胞(WBC)计数,年龄和C反应蛋白(CRP)鉴定为有用的预测指标。开发了五个预测因素参数和基于CXR图像的列函数评分,以量化死亡的概率并将其分为两个风险组:分别存活(<50%)和死亡(> = 50%)。多模式技术能够预测F1评分为92.88%的高危患者的死亡概率。开发和验证队列曲线下的面积分别为0.981和0.939。
translated by 谷歌翻译
目的:临床票据含有其他地方未存在的信息,包括药物反应和症状,所有这些都在预测急性护理患者的关键结果时非常重要。我们提出了从临床笔记中的表型作为一种捕获基本信息的方法的自动注释,这与通常使用生命体征和实验室测试结果的互补性,以预测重症监护单元(ICU)中的结果。方法:我们开发一种新颖的表型注释模型,用于注释患者的表型特征,然后用作预测模型的输入特征,以预测ICU患者结果。我们展示并验证了我们的方法对三个ICU预测任务进行实验,包括使用MIMIC-III数据集的医院死亡率,生理失效和超过24,000名患者的逗留时间。结果:掺入表型信息的预测模型实现0.845(AUC-ROC),以预测医院死亡率,0.839(AUC-ROC)的生理失代偿和0.430(Kappa),所有这些都始终胜过基线模型利用只有生命的迹象和实验室测试结果。此外,我们进行了彻底的解释性研究,表明表型在患者和队列水平方面提供了有价值的见解。结论:该方法表明表型信息是传统上使用生命体征和实验室测试结果的补充,改善了ICU中的结果的重要预测。
translated by 谷歌翻译
细菌感染负责全球高死亡率。感染潜在的抗菌素耐药性,多方面的患者的临床状况会阻碍正确选择抗生素治疗。随机临床试验提供了平均治疗效果估计值,但对于治疗选择的风险分层和优化,即个性化治疗效果(ITE)并不理想。在这里,我们利用了从美国南部学术诊所收集的大规模电子健康记录数据,模仿临床试验,即“目标试验”,并为诊断患有急性细菌的患者开发了死亡率预测和ITE估计的机器学习模型皮肤和皮肤结构感染(ABSSI)是由于金黄色葡萄球菌(MRSA)引起的。 ABSSI-MRSA是一个充满挑战的疾病,治疗选择减少 - 万古霉素是首选的选择,但它具有不可忽略的副作用。首先,我们使用倾向评分匹配来模仿试验并创建随机治疗(万古霉素与其他抗生素)数据集。接下来,我们使用此数据来训练各种机器学习方法(包括增强/Lasso Logistic回归,支持向量机和随机森林),并通过引导验证选择接收器特征(AUC)下的面积最佳模型。最后,我们使用这些模型来计算ITE并通过改变治疗的变化来避免死亡。排出外测试表明,SVM和RF是最准确的,AUC分别为81%和78%,但BLR/Lasso不远(76%)。通过使用BLR/Lasso计算反事实,万古霉素增加了死亡的风险,但显示出很大的变化(优势比1.2,95%范围0.4-3.8),对结果概率的贡献是适度的。取而代之的是,RF在ITE中表现出更大的变化,表明更复杂的治疗异质性。
translated by 谷歌翻译
抗微生物抗性(AMR)是患者的风险和医疗保健系统的负担。但是,AMR测定通常需要几天。本研究为基于易于使用的临床和微生物预测因子,包括患者人口统计,医院住宿数据,诊断,临床特征以及微生物/抗微生物特征,以及仅使用微生物/抗微生物特征将这些模型与微生物/抗微生物特性进行基于幼稚抗体模型的模型的预测模型。在培养之前准确地预测阻力的能力可以向临床决策提供通知临床决策并缩短行动时间。这里采用的机器学习算法显示出改进的分类性能(接收器操作特性曲线0.88-0.89的区域)与使用飞利浦EICU研究所的6个生物和10个抗生素的接收器操作特征曲线0.86下的接收器下的面积为0.88-0.89)(ERI )数据库。该方法可以帮助指导抗菌治疗,目的是改善患者结果并减少不必要或无效抗生素的使用。
translated by 谷歌翻译
The issue of left before treatment complete (LBTC) patients is common in emergency departments (EDs). This issue represents a medico-legal risk and may cause a revenue loss. Thus, understanding the factors that cause patients to leave before treatment is complete is vital to mitigate and potentially eliminate these adverse effects. This paper proposes a framework for studying the factors that affect LBTC outcomes in EDs. The framework integrates machine learning, metaheuristic optimization, and model interpretation techniques. Metaheuristic optimization is used for hyperparameter optimization--one of the main challenges of machine learning model development. Three metaheuristic optimization algorithms are employed for optimizing the parameters of extreme gradient boosting (XGB), which are simulated annealing (SA), adaptive simulated annealing (ASA), and adaptive tabu simulated annealing (ATSA). The optimized XGB models are used to predict the LBTC outcomes for the patients under treatment in ED. The designed algorithms are trained and tested using four data groups resulting from the feature selection phase. The model with the best predictive performance is interpreted using SHaply Additive exPlanations (SHAP) method. The findings show that ATSA-XGB outperformed other mode configurations with an accuracy, area under the curve (AUC), sensitivity, specificity, and F1-score of 86.61%, 87.50%, 85.71%, 87.51%, and 86.60%, respectively. The degree and the direction of effects of each feature were determined and explained using the SHAP method.
translated by 谷歌翻译
高血压是心血管疾病的主要原因和过早死亡。不同的高血压亚型可能在其预后变化,并且需要不同的治疗方法。个人的高血压风险由遗传和环境因素以及它们的相互作用决定。在这项工作中,我们研究了911名非洲裔美国人和1171名欧洲美国人在高血压遗传流行病学网络(Hypergen)Cohort中。我们使用环境变量和基于不同标准选择的遗传功能组建造的高血压子类型分类模型。拟合模型提供了洞察高血压亚型的遗传景观,这可能有助于未来的个性化诊断和治疗高血压。
translated by 谷歌翻译
尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
Tongue cancer is a common oral cavity malignancy that originates in the mouth and throat. Much effort has been invested in improving its diagnosis, treatment, and management. Surgical removal, chemotherapy, and radiation therapy remain the major treatment for tongue cancer. The survival of patients determines the treatment effect. Previous studies have identified certain survival and risk factors based on descriptive statistics, ignoring the complex, nonlinear relationship among clinical and demographic variables. In this study, we utilize five cutting-edge machine learning models and clinical data to predict the survival of tongue cancer patients after treatment. Five-fold cross-validation, bootstrap analysis, and permutation feature importance are applied to estimate and interpret model performance. The prognostic factors identified by our method are consistent with previous clinical studies. Our method is accurate, interpretable, and thus useable as additional evidence in tongue cancer treatment and management.
translated by 谷歌翻译