With the development of technology and sharing economy, Airbnb as a famous short-term rental platform, has become the first choice for many young people to select. The issue of Airbnb's pricing has always been a problem worth studying. While the previous studies achieve promising results, there are exists deficiencies to solve. Such as, (1) the feature attributes of rental are not rich enough; (2) the research on rental text information is not deep enough; (3) there are few studies on predicting the rental price combined with the point of interest(POI) around the house. To address the above challenges, we proposes a multi-source information embedding(MSIE) model to predict the rental price of Airbnb. Specifically, we first selects the statistical feature to embed the original rental data. Secondly, we generates the word feature vector and emotional score combination of three different text information to form the text feature embedding. Thirdly, we uses the points of interest(POI) around the rental house information generates a variety of spatial network graphs, and learns the embedding of the network to obtain the spatial feature embedding. Finally, this paper combines the three modules into multi source rental representations, and uses the constructed fully connected neural network to predict the price. The analysis of the experimental results shows the effectiveness of our proposed model.
translated by 谷歌翻译
在本文中,我们对亚马逊的产品评论和彻底分析模型解释性进行了句子级别情绪分析。对于情感分析任务,我们使用Bilstm模型与注意机制。对于对解释性的研究,我们认为单句子的注意力分布和主要方面术语的注意力。该模型的准确性高达0.96。我们发现,这些方面术语具有比句子中的感伤词相同或更具更多的注意力。
translated by 谷歌翻译
股票市场是一个网络,为几乎所有主要的经济交易提供平台。虽然投资股票市场是一个好主意,但对单个股票进行投资可能不是一个好主意,尤其是对于休闲投资者而言。智能储备需要深入研究和大量奉献精神。预测这种股票价值提供了巨大的套利利润机会。找到解决方案的这种吸引力促使研究人员找到了过去的问题,例如波动,季节性和时间依赖时间。本文调查了自然语言处理和机器学习技术领域的最新文献,用于预测股票市场的发展。本文的主要贡献包括许多最近的文章的复杂分类以及股票市场预测研究及其相关领域的最新研究趋势。
translated by 谷歌翻译
作为自然现象的地震,历史上不断造成伤害和人类生活的损失。地震预测是任何社会计划的重要方面,可以增加公共准备,并在很大程度上减少损坏。然而,由于地震的随机特征以及实现了地震预测的有效和可靠模型的挑战,迄今为止努力一直不足,需要新的方法来解决这个问题。本文意识到​​这些问题,提出了一种基于注意机制(AM),卷积神经网络(CNN)和双向长短期存储器(BILSTM)模型的新型预测方法,其可以预测数量和最大幅度中国大陆各地区的地震为基于该地区的地震目录。该模型利用LSTM和CNN具有注意机制,以更好地关注有效的地震特性并产生更准确的预测。首先,将零阶保持技术应用于地震数据上的预处理,使得模型的输入数据更适当。其次,为了有效地使用空间信息并减少输入数据的维度,CNN用于捕获地震数据之间的空间依赖性。第三,使用Bi-LSTM层来捕获时间依赖性。第四,引入了AM层以突出其重要的特征来实现更好的预测性能。结果表明,该方法具有比其他预测方法更好的性能和概括能力。
translated by 谷歌翻译
我们分析和分类从电影评论构建的文本数据的观点。为此,我们使用量子机学习算法的基于内核的方法。为了组合量子内核,我们使用使用不同Pauli旋转门组合构造的电路,其中旋转参数是从文本数据获得的数据点的经典非线性函数。为了分析提出的模型的性能,我们使用决策树,增强分类器以及经典和量子支持向量机分析量子模型。我们的结果表明,就所有评估指标而言,量子内核模型或量子支持向量机优于用于分析的所有其他算法。与经典的支持向量机相比,量子支持向量机也会带来明显更好的结果,即使功能数量增加或尺寸增加。结果清楚地表明,如果功能的数量为$ 15 $,则使用量子支持向量机使用量子支持向量机的精度分数提高了$ 9.4 \%$,而经典支持向量机则将其提高。
translated by 谷歌翻译
The stock market prediction has been a traditional yet complex problem researched within diverse research areas and application domains due to its non-linear, highly volatile and complex nature. Existing surveys on stock market prediction often focus on traditional machine learning methods instead of deep learning methods. Deep learning has dominated many domains, gained much success and popularity in recent years in stock market prediction. This motivates us to provide a structured and comprehensive overview of the research on stock market prediction focusing on deep learning techniques. We present four elaborated subtasks of stock market prediction and propose a novel taxonomy to summarize the state-of-the-art models based on deep neural networks from 2011 to 2022. In addition, we also provide detailed statistics on the datasets and evaluation metrics commonly used in the stock market. Finally, we highlight some open issues and point out several future directions by sharing some new perspectives on stock market prediction.
translated by 谷歌翻译
股票市场的不可预测性和波动性使得使用任何广义计划赚取可观的利润具有挑战性。许多先前的研究尝试了不同的技术来建立机器学习模型,这可以通过进行实时交易来在美国股票市场赚取可观的利润。但是,很少有研究重点是在特定交易期找到最佳功能的重要性。我们的顶级方法使用该性能将功能从总共148缩小到大约30。此外,在每次训练我们的机器学习模型之前,都会动态选择前25个功能。它与四个分类器一起使用合奏学习:高斯天真贝叶斯,决策树,带L1正则化的逻辑回归和随机梯度下降,以决定是长时间还是短的特定股票。我们的最佳模型在2011年7月至2019年1月之间进行的每日交易,可获得54.35%的利润。最后,我们的工作表明,加权分类器的混合物的表现要比任何在股票市场做出交易决策的个人预测指标更好。
translated by 谷歌翻译
在许多研究中已经表明,考虑相关股票数据预测股票价格变动的重要性,但是,用于建模,嵌入和分析相互关联股票行为的先进图形技术尚未被广泛利用,以预测股票价格变动。该领域的主要挑战是找到一种建模任意股票之间现有关系的方法,并利用这种模型来改善这些股票的预测绩效。该领域中的大多数现有方法都取决于基本的图形分析技术,预测能力有限,并且缺乏通用性和灵活性。在本文中,我们介绍了一个名为GCNET的新颖框架,该框架将任意股票之间的关系建模为称为“影响网络”的图形结构,并使用一组基于历史的预测模型来推断出股票子集的合理初始标签图中的节点。最后,GCNET使用图形卷积网络算法来分析此部分标记的图形,并预测图中每个库存的下一个运动价格方向。 GCNET是一个一般预测框架,可以根据其历史数据来预测相互作用股票的价格波动。我们对纳斯达克指数一组股票的实验和评估表明,GCNET在准确性和MCC测量方面显着提高了SOTA的性能。
translated by 谷歌翻译
智能学习诊断是智能教育的关键引擎,旨在估计学习者当前的知识掌握状态并预测其未来的学习绩效。传统学习诊断方法的重大挑战是无法平衡诊断准确性和解释性。为了解决上述问题,提议的统一可解释的智能学习诊断框架从深度学习的强大表示能力和心理测量的可解释性中受益,实现了学习预测的良好表现,并从三个方面提供了解释性:认知参数,学习者 - 资源响应网络和自我注意机制的权重。在拟议的框架内,本文提出了两通道学习诊断机制LDM-ID以及三通道学习诊断机制LDM-HMI。在两个现实世界数据集和模拟数据集上进行的实验表明,与最先进的模型相比,我们的方法在预测学习者的表现方面具有更高的准确性,并且可以为精确学习资源建议和诸如精确学习资源建议和应用程序提供有价值的教育解释性个性化的学习辅导在智能教育中。
translated by 谷歌翻译
原油价格预测研究由于其对全球经济的重大影响,从学者和政策制定者引起了巨大的关注。除供需外,原油价格在很大程度上受到各种因素的影响,如经济发展,金融市场,冲突,战争和政治事件。最先前的研究将原油价格预测视为时间序列或计量计量的可变预测问题。虽然最近已经考虑了考虑实时新闻事件的影响,但大多数作品主要使用原始新闻头条或主题模型来提取文本功能,而不会深刻探索事件信息。在这项研究中,提出了一种新的原油价格预测框架,Agesl,用于处理这个问题。在我们的方法中,利用开放域事件提取算法提取底层相关事件,并且文本情绪分析算法用于从大规模新闻中提取情绪。然后,一系列深度神经网络集成了新闻事件特征,感情特征和历史价格特征,以预测未来原油价格。实证实验是在西德克萨斯中间体(WTI)原油价格数据上进行的,结果表明,与几种基准方法相比,我们的方法获得了卓越的性能。
translated by 谷歌翻译
基于历史行为数据的行为预测具有实际的现实意义。它已在推荐,预测学习成绩等中应用。随着用户数据描述的完善,新功能的发展以及多个数据源的融合,包含多种行为的异质行为数据变得越来越普遍。在本文中,我们旨在纳入行为预测的异质用户行为和社会影响。为此,本文提出了一个长期术语内存(LSTM)的变体,该变体可以在对行为序列进行建模时考虑上下文信息,该投影机制可以模拟不同类型的行为之间的多方面关系以及多方面的多方面关系注意机制可以动态地从不同的方面找到信息。许多行为数据属于时空数据。提出了一种基于时空数据并建模社会影响力的社交行为图的无监督方法。此外,基于剩余的基于学习的解码器旨在根据社会行为表示和其他类型的行为表示自动构建多个高阶交叉特征。对现实世界数据集的定性和定量实验已经证明了该模型的有效性。
translated by 谷歌翻译
社交审核已经占据了网络,成为产品信息的合理来源。人和企业使用此类信息进行决策。企业还利用社交信息使用单个用户,用户组或培训的机器人传播伪信息以产生欺诈内容。许多研究提出了基于用户行为和审查文本来解决欺诈检测挑战的方法。为了提供详尽的文献综述,使用框架进行审查的社会欺诈检测,该框架考虑了三个关键组件:审查本身,执行审核的用户以及正在审查的项目。作为组件表示提取的特征,基于行为,基于文本的特征及其组合提供了一个特征明智的审查。通过此框架,展示了全面的方法概述,包括监督,半监督和无监督的学习。欺诈检测的监督方法被引入并分为两个子类别;古典,深入学习。解释了标记的数据集缺乏,并提出了潜在的解决方案。为了帮助该地区的新研究人员发展更好的理解,在建议的系统框架的每一步中提供了一个主题分析和未来方向的概述。
translated by 谷歌翻译
社交媒体网络已成为人们生活的重要方面,它是其思想,观点和情感的平台。因此,自动化情绪分析(SA)对于以其他信息来源无法识别人们的感受至关重要。对这些感觉的分析揭示了各种应用,包括品牌评估,YouTube电影评论和医疗保健应用。随着社交媒体的不断发展,人们以不同形式发布大量信息,包括文本,照片,音频和视频。因此,传统的SA算法已变得有限,因为它们不考虑其他方式的表现力。通过包括来自各种物质来源的此类特征,这些多模式数据流提供了新的机会,以优化基于文本的SA之外的预期结果。我们的研究重点是多模式SA的最前沿领域,该领域研究了社交媒体网络上发布的视觉和文本数据。许多人更有可能利用这些信息在这些平台上表达自己。为了作为这个快速增长的领域的学者资源,我们介绍了文本和视觉SA的全面概述,包括数据预处理,功能提取技术,情感基准数据集以及适合每个字段的多重分类方法的疗效。我们还简要介绍了最常用的数据融合策略,并提供了有关Visual Textual SA的现有研究的摘要。最后,我们重点介绍了最重大的挑战,并调查了一些重要的情感应用程序。
translated by 谷歌翻译
Network intrusion detection systems (NIDSs) play an important role in computer network security. There are several detection mechanisms where anomaly-based automated detection outperforms others significantly. Amid the sophistication and growing number of attacks, dealing with large amounts of data is a recognized issue in the development of anomaly-based NIDS. However, do current models meet the needs of today's networks in terms of required accuracy and dependability? In this research, we propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability. Our proposed method ensures efficient pre-processing by combining SMOTE for data balancing and XGBoost for feature selection. We compared our developed method to various machine learning and deep learning algorithms to find a more efficient algorithm to implement in the pipeline. Furthermore, we chose the most effective model for network intrusion based on a set of benchmarked performance analysis criteria. Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022, with an accuracy of 99.99% and 100% for KDDCUP'99 and CIC-MalMem-2022, respectively, and no overfitting or Type-1 and Type-2 issues.
translated by 谷歌翻译
随着软件量表和复杂性的快速增长,将大量错误报告提交到错误跟踪系统中。为了加快缺陷维修的速度,需要对这些报告进行准确的分类,以便可以将其发送给适当的开发人员。但是,现有的分类方法仅使用错误报告的文本信息,从而导致其性能较低。为了解决上述问题,本文提出了一种用于错误报告的新自动分类方法。创新是,当对错误报告进行分类时,除了使用报告的文本信息外,还考虑了报告的意图(即建议或解释),从而提高了分类的性能。首先,我们从四个生态系统(Apache,Eclipse,Gentoo,Mozilla)收集错误报告,并手动注释它们以构建实验数据集。然后,我们使用自然语言处理技术来预处理数据。在此基础上,BERT和TF-IDF用于提取意图的功能和多个文本信息。最后,这些功能用于训练分类器。对五个分类器(包括k-nearest邻居,天真的贝叶斯,逻辑回归,支持向量机和随机森林)的实验结果表明,我们提出的方法可实现更好的性能,其F量度从87.3%达到95.5%。
translated by 谷歌翻译
旅行时间是交通的重要措施。准确的旅行时间预测也是操作和先进信息系统的基础。短期旅行时间预测等各种解决方案,例如利用实时GPS数据和优化方法来跟踪车辆的路径的解决方案。然而,可靠的长期预测仍然具有挑战性。我们在本文中展示了旅行时间的适用性和有用性即邮政服务的交货时间预测。我们调查了几种方法,如线性回归模型和基于树的集合,如随机森林,堆垛和升压,允许通过进行广泛的实验并考虑许多可用性方案来预测交货时间。结果表明,旅行时间预测可以帮助减轻邮政服务的高延误。我们表明,一些升压算法,例如轻梯度提升和CATBoost,在准确性和运行时效率方面具有比其他基线,如线性回归模型,装袋回归和随机林等其他基线具有更高的性能。
translated by 谷歌翻译
由于在线学习和评估平台(例如Coursera,Udemy,Khan Academy等)的兴起,对论文(AES)和自动论文评分的自动评估(AES)已成为一个严重的问题。研究人员最近提出了许多用于自动评估的技术。但是,其中许多技术都使用手工制作的功能,因此从特征表示的角度受到限制。深度学习已成为机器学习中的新范式,可以利用大量数据并确定对论文评估有用的功能。为此,我们提出了一种基于复发网络(RNN)和卷积神经网络(CNN)的新型体系结构。在拟议的体系结构中,多通道卷积层从嵌入矢量和基本语义概念中学习并捕获单词n-gram的上下文特征,并使用max-pooling操作在论文级别形成特征向量。 RNN的变体称为双门复发单元(BGRU),用于访问以前和后续的上下文表示。该实验是对Kaggle上的八个数据集进行的,以实现AES的任务。实验结果表明,我们提出的系统比其他基于深度学习的AES系统以及其他最新AES系统的评分精度明显更高。
translated by 谷歌翻译
基于方面的情感分析非常重要和应用,因为它能够识别文本中讨论的所有方面。但是,基于方面的情感分析将是最有效的,除了确定文本中讨论的所有方面外,它还可以识别其极性。大多数以前的方法都使用管道方法,即,它们首先识别各个方面,然后识别极性。此类方法不适合实际应用,因为它们可以导致模型错误。因此,在这项研究中,我们提出了一个基于卷积神经网络(CNN)的多任务学习模型,该模型可以同时检测方面类别并检测方面类别的极性。单独创建模型可能不会提供最佳的预测,并导致诸如偏见和高方差之类的错误。为了减少这些错误并提高模型预测的效率,将几种称为合奏学习的模型组合在一起可以提供更好的结果。因此,本文的主要目的是创建一个基于多任务深度卷积神经网络合奏的模型,以增强波斯评论中的情感分析。我们使用电影域中的波斯语数据集评估了提出的方法。 jacquard索引和锤损失措施用于评估开发模型的性能。结果表明,这种新方法提高了波斯语中情感分析模型的效率。
translated by 谷歌翻译
由于时空事件发生的随机性,在报告的交通中断开始时缺乏信息,并且缺乏运输工程的高级方法来从过去中获得见解,因此预测交通事故持续时间是一个难题事故。本文提出了一个新的Fusion框架,用于通过将机器学习与交通流量/速度和事件描述作为功能进行集成来预测有限信息的事件持续时间,并通过多种深度​​学习方法编码(ANN AUTOCONEDER和角色级别的LSTM-ANN情绪分类器)。该论文在运输和数据科学中构建了跨学科建模方法。该方法提高了适用于基线事件报告的最佳表现ML模型的入射持续时间预测准确性。结果表明,与标准线性或支持矢量回归模型相比,我们提出的方法可以提高准确性$ 60 \%$,并且相对于混合深度学习自动编码的GBDT模型的另外7美元\%$改进,这似乎胜过表现所有其他模型。应用区是旧金山市,富含交通事件日志(全国交通事故数据集)和过去的历史交通拥堵信息(Caltrans绩效测量系统的5分钟精度测量)。
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译