联合学习(FL)是一种培训技术,使客户端设备能够通过聚合本地计算的模型来共同学习共享模型,而无需暴露其原始数据。虽然大多数现有工作侧重于提高流动模型准确性,但在本文中,我们专注于提高培训效率,这往往是采用现实世界应用的流域的障碍。具体而言,我们设计了一个有效的FL框架,该框架共同优化了模型精度,处理延迟和通信效率,所有这些都是FL实际实施的主要设计考虑因素。灵感来自近期多智能经纪增强学习(MARL)在解决复杂控制问题方面的成功,我们呈现\ TEXTIT {FEDMARL},基于MARL为基础的FL框架,它执行有效的运行时客户端选择。实验表明,Fedmarl可以显着提高模型准确性,处理延迟和通信成本要低得多。
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译
高效联合学习是在边缘设备上培训和部署AI模型的关键挑战之一。然而,在联合学习中维护数据隐私提出了几种挑战,包括数据异质性,昂贵的通信成本和有限的资源。在本文中,我们通过(a)通过基于本地客户端的深度增强学习引入突出参数选择代理的上述问题,并在中央服务器上聚合所选择的突出参数,(b)分割正常的深度学习模型〜 (例如,CNNS)作为共享编码器和本地预测器,并通过联合学习训练共享编码器,同时通过本地自定义预测器将其知识传送到非IID客户端。所提出的方法(a)显着降低了联合学习的通信开销,并加速了模型推断,而方法(b)则在联合学习中解决数据异质性问题。此外,我们利用梯度控制机制来校正客户之间的梯度异质性。这使得训练过程更稳定并更快地收敛。实验表明,我们的方法产生了稳定的训练过程,并与最先进的方法相比实现了显着的结果。在培训VGG-11时,我们的方法明显降低了通信成本最高108 GB,并在培训Reset-20时需要7.6美元的通信开销,同时通过减少高达39.7 \%$ 39.7 \%$ vgg- 11.
translated by 谷歌翻译
随着对用户数据隐私的越来越关注,联合学习(FL)已被开发为在边缘设备上训练机器学习模型的独特培训范式,而无需访问敏感数据。传统的FL和现有方法直接在云服务器的同一型号和培训设备的所有边缘上采用聚合方法。尽管这些方法保护了数据隐私,但它们不能具有模型异质性,甚至忽略了异质的计算能力,也可以忽略陡峭的沟通成本。在本文中,我们目的是将资源感知的FL汇总为从边缘模型中提取的本地知识的集合,而不是汇总每个本地模型的权重,然后将其蒸馏成一个强大的全局知识,作为服务器模型通过知识蒸馏。通过深入的相互学习,将本地模型和全球知识提取到很小的知识网络中。这种知识提取使Edge客户端可以部署资源感知模型并执行多模型知识融合,同时保持沟通效率和模型异质性。经验结果表明,在异质数据和模型中的通信成本和概括性能方面,我们的方法比现有的FL算法有了显着改善。我们的方法将VGG-11的沟通成本降低了102美元$ \ times $和Resnet-32,当培训Resnet-20作为知识网络时,最多可达30美元$ \ times $。
translated by 谷歌翻译
联合学习(FL)可以培训全球模型,而无需共享存储在多个设备上的分散的原始数据以保护数据隐私。由于设备的能力多样化,FL框架难以解决Straggler效应和过时模型的问题。此外,数据异质性在FL训练过程中会导致全球模型的严重准确性降解。为了解决上述问题,我们提出了一个层次同步FL框架,即Fedhisyn。 Fedhisyn首先根据其计算能力将所有可​​用的设备簇分为少数类别。经过一定的本地培训间隔后,将不同类别培训的模型同时上传到中央服务器。在单个类别中,设备根据环形拓扑会相互传达局部更新的模型权重。随着环形拓扑中训练的效率更喜欢具有均匀资源的设备,基于计算能力的分类减轻了Straggler效应的影响。此外,多个类别的同步更新与单个类别中的设备通信的组合有助于解决数据异质性问题,同时达到高精度。我们评估了基于MNIST,EMNIST,CIFAR10和CIFAR100数据集的提议框架以及设备的不同异质设置。实验结果表明,在训练准确性和效率方面,Fedhisyn的表现优于六种基线方法,例如FedAvg,脚手架和Fedat。
translated by 谷歌翻译
Federated Learning (FL) is a machine learning paradigm that enables the training of a shared global model across distributed clients while keeping the training data local. While most prior work on designing systems for FL has focused on using stateful always running components, recent work has shown that components in an FL system can greatly benefit from the usage of serverless computing and Function-as-a-Service technologies. To this end, distributed training of models with severless FL systems can be more resource-efficient and cheaper than conventional FL systems. However, serverless FL systems still suffer from the presence of stragglers, i.e., slow clients due to their resource and statistical heterogeneity. While several strategies have been proposed for mitigating stragglers in FL, most methodologies do not account for the particular characteristics of serverless environments, i.e., cold-starts, performance variations, and the ephemeral stateless nature of the function instances. Towards this, we propose FedLesScan, a novel clustering-based semi-asynchronous training strategy, specifically tailored for serverless FL. FedLesScan dynamically adapts to the behaviour of clients and minimizes the effect of stragglers on the overall system. We implement our strategy by extending an open-source serverless FL system called FedLess. Moreover, we comprehensively evaluate our strategy using the 2nd generation Google Cloud Functions with four datasets and varying percentages of stragglers. Results from our experiments show that compared to other approaches FedLesScan reduces training time and cost by an average of 8% and 20% respectively while utilizing clients better with an average increase in the effective update ratio of 17.75%.
translated by 谷歌翻译
联合学习(FL)可以对机器学习模型进行分布式培训,同时将个人数据保存在用户设备上。尽管我们目睹了FL在移动传感领域的越来越多的应用,例如人类活动识别(HAR),但在多设备环境(MDE)的背景下,尚未对FL进行研究,其中每个用户都拥有多个数据生产设备。随着移动设备和可穿戴设备的扩散,MDE在Ubicomp设置中越来越受欢迎,因此需要对其中的FL进行研究。 MDE中的FL的特征是在客户和设备异质性的存在中并不复杂,并不是独立的,并且在客户端之间并非独立分布(非IID)。此外,确保在MDE中有效利用佛罗里达州客户的系统资源仍然是一个重要的挑战。在本文中,我们提出了以用户为中心的FL培训方法来应对MDE中的统计和系统异质性,并在设备之间引起推理性能的一致性。火焰功能(i)以用户为中心的FL培训,利用同一用户的设备之间的时间对齐; (ii)准确性和效率感知设备的选择; (iii)对设备的个性化模型。我们还提出了具有现实的能量流量和网络带宽配置文件的FL评估测试,以及一种基于类的新型数据分配方案,以将现有HAR数据集扩展到联合设置。我们在三个多设备HAR数据集上的实验结果表明,火焰的表现优于各种基准,F1得分高4.3-25.8%,能源效率提高1.02-2.86倍,并高达2.06倍的收敛速度,以通过FL的公平分布来获得目标准确性工作量。
translated by 谷歌翻译
Federated learning (FL) is a collaborative machine learning framework that requires different clients (e.g., Internet of Things devices) to participate in the machine learning model training process by training and uploading their local models to an FL server in each global iteration. Upon receiving the local models from all the clients, the FL server generates a global model by aggregating the received local models. This traditional FL process may suffer from the straggler problem in heterogeneous client settings, where the FL server has to wait for slow clients to upload their local models in each global iteration, thus increasing the overall training time. One of the solutions is to set up a deadline and only the clients that can upload their local models before the deadline would be selected in the FL process. This solution may lead to a slow convergence rate and global model overfitting issues due to the limited client selection. In this paper, we propose the Latency awarE Semi-synchronous client Selection and mOdel aggregation for federated learNing (LESSON) method that allows all the clients to participate in the whole FL process but with different frequencies. That is, faster clients would be scheduled to upload their models more frequently than slow clients, thus resolving the straggler problem and accelerating the convergence speed, while avoiding model overfitting. Also, LESSON is capable of adjusting the tradeoff between the model accuracy and convergence rate by varying the deadline. Extensive simulations have been conducted to compare the performance of LESSON with the other two baseline methods, i.e., FedAvg and FedCS. The simulation results demonstrate that LESSON achieves faster convergence speed than FedAvg and FedCS, and higher model accuracy than FedCS.
translated by 谷歌翻译
联合学习(FL)作为边缘设备的有希望的技术,以协作学习共享预测模型,同时保持其训练数据,从而解耦了从需要存储云中的数据的机器学习的能力。然而,在规模和系统异质性方面,FL难以现实地实现。虽然有许多用于模拟FL算法的研究框架,但它们不支持在异构边缘设备上进行可扩展的流程。在本文中,我们呈现花 - 一种全面的FL框架,通过提供新的设施来执行大规模的FL实验并考虑丰富的异构流程来区分现有平台。我们的实验表明花卉可以仅使用一对高端GPU在客户尺寸下进行FL实验。然后,研究人员可以将实验无缝地迁移到真实设备中以检查设计空间的其他部分。我们认为花卉为社区提供了一个批判性的新工具,用于研究和发展。
translated by 谷歌翻译
联合学习(FL)是一种有效的分布式机器学习范式,以隐私的方式采用私人数据集。 FL的主要挑战是,END设备通常具有各种计算和通信功能,其培训数据并非独立且分布相同(非IID)。由于在移动网络中此类设备的通信带宽和不稳定的可用性,因此只能在每个回合中选择最终设备(也称为参与者或客户端的参与者或客户端)。因此,使用有效的参与者选择方案来最大程度地提高FL的性能,包括最终模型的准确性和训练时间,这一点至关重要。在本文中,我们对FL的参与者选择技术进行了评论。首先,我们介绍FL并突出参与者选择期间的主要挑战。然后,我们根据其解决方案来审查现有研究并将其分类。最后,根据我们对该主题领域最新的分析的分析,我们为FL的参与者选择提供了一些未来的指示。
translated by 谷歌翻译
机器学习模型已在移动网络中部署,以处理来自不同层的数据,以实现自动化网络管理和设备的智能。为了克服集中式机器学习的高度沟通成本和严重的隐私问题,已提出联合学习(FL)来实现网络设备之间的分布式机器学习。虽然在FL中广泛研究了计算和通信限制,但仍未探索设备存储对FL性能的影响。如果没有有效有效的数据选择政策来过滤设备上的大量流媒体数据,经典FL可能会遭受更长的模型训练时间(超过$ 4 \ times $)和显着的推理准确性(超过$ 7 \%\%$),则遭受了损失,观察到了。在我们的实验中。在这项工作中,我们迈出了第一步,考虑使用有限的在设备存储的FL的在线数据选择。我们首先定义了一个新的数据评估度量,以在FL中进行数据选择:在设备数据样本上,局部梯度在所有设备的数据上投影到全球梯度上。我们进一步设计\ textbf {ode},一个\ textbf {o} nline \ textbf {d} ata s \ textbf {e textbf {e} fl for f for fl f textbf {o}的框架,用于协作网络设备,以协作存储有价值的数据示例,并保证用于快速的理论保证同时提高模型收敛并增强最终模型精度。一项工业任务(移动网络流量分类)和三个公共任务(综合任务,图像分类,人类活动识别)的实验结果显示了ODE的显着优势,而不是最先进的方法。特别是,在工业数据集上,ODE的成就高达$ 2.5 \ times $ $加速的培训时间和6美元的最终推理准确性增加,并且在实践环境中对各种因素都有强大的态度。
translated by 谷歌翻译
联合学习(FL)通常以同步平行方式进行,其中慢速客户的参与延迟了训练迭代。当前的FL系统采用参与者选择策略,在每次迭代中选择具有优质数据的快速客户。但是,这在实践中并不总是可以的,而且选择策略通常必须在客户的速度和数据质量之间进行不愉快的权衡。在本文中,我们提出了双鱼座,这是一种具有智能参与者选择和用于加速培训的模型聚合的异步FL系统。为了避免产生过多的资源成本和陈旧的培训计算,双鱼座使用新颖的评分机制来识别合适的客户参加培训迭代。它还可以调整模型聚合的步伐,以动态限制所选客户端和服务器之间的进度差距,并在平滑的非convex设置中具有可证明的融合保证。我们已经在一个名为Plato的开源FL平台中实现了双鱼座,并评估了其在流行视觉和语言模型的大规模实验中的性能。双鱼座的表现优于最先进的同步和异步方案,分别高达2.0倍和1.9倍的时间加速。
translated by 谷歌翻译
联邦学习(FL)是利用属于患者,人,公司或行业的敏感数据的合适解决方案,这些数据在刚性隐私约束下工作的难题。 FL主要或部分地支持数据隐私和安全问题,并提供促进促进多个边缘设备或组织的模型问题的替代方案,以使用许多本地数据培训全局模型而不具有它们。由其分布式自然引起的FL的非IID数据具有显着的性能下降和稳定性偏斜。本文介绍了一种新颖的方法,通过增强图像动态平衡客户端的数据分布,以解决FL的非IID数据问题。介绍的方法非常稳定模型培训,并将模型的测试精度从83.22%提高到89.43%,对于高度IID FL设定中的胸部X射线图像的多胸疾病检测。 IID,非IID和非IID的结果,联合培训表明,该方法可能有助于鼓励组织或研究人员开发更好的系统,以获得与数据隐私的数据的价值不仅适用于医疗保健,而且领域。
translated by 谷歌翻译
Federated learning (FL) is a method to train model with distributed data from numerous participants such as IoT devices. It inherently assumes a uniform capacity among participants. However, participants have diverse computational resources in practice due to different conditions such as different energy budgets or executing parallel unrelated tasks. It is necessary to reduce the computation overhead for participants with inefficient computational resources, otherwise they would be unable to finish the full training process. To address the computation heterogeneity, in this paper we propose a strategy for estimating local models without computationally intensive iterations. Based on it, we propose Computationally Customized Federated Learning (CCFL), which allows each participant to determine whether to perform conventional local training or model estimation in each round based on its current computational resources. Both theoretical analysis and exhaustive experiments indicate that CCFL has the same convergence rate as FedAvg without resource constraints. Furthermore, CCFL can be viewed of a computation-efficient extension of FedAvg that retains model performance while considerably reducing computation overhead.
translated by 谷歌翻译
联合学习(FL)是AI的新出现的分支,它有助于边缘设备进行协作训练全球机器学习模型,而无需集中数据并默认使用隐私。但是,尽管进步显着,但这种范式面临着各种挑战。具体而言,在大规模部署中,客户异质性是影响培训质量(例如准确性,公平性和时间)的规范。此外,这些电池约束设备的能源消耗在很大程度上尚未探索,这是FL的广泛采用的限制。为了解决这个问题,我们开发了EAFL,这是一种能源感知的FL选择方法,该方法考虑了能源消耗以最大程度地提高异质目标设备的参与。 \ Scheme是一种功能感知的培训算法,该算法与电池电量更高的挑选客户结合使用,并具有最大化系统效率的能力。我们的设计共同最大程度地减少了临界时间,并最大程度地提高了其余的电池电池水平。 \方案将测试模型的精度提高了高达85 \%,并将客户的辍学率降低了2.45 $ \ times $。
translated by 谷歌翻译
Federated learning (FL) allows multiple clients cooperatively train models without disclosing local data. However, the existing works fail to address all these practical concerns in FL: limited communication resources, dynamic network conditions and heterogeneous client properties, which slow down the convergence of FL. To tackle the above challenges, we propose a heterogeneity-aware FL framework, called FedCG, with adaptive client selection and gradient compression. Specifically, the parameter server (PS) selects a representative client subset considering statistical heterogeneity and sends the global model to them. After local training, these selected clients upload compressed model updates matching their capabilities to the PS for aggregation, which significantly alleviates the communication load and mitigates the straggler effect. We theoretically analyze the impact of both client selection and gradient compression on convergence performance. Guided by the derived convergence rate, we develop an iteration-based algorithm to jointly optimize client selection and compression ratio decision using submodular maximization and linear programming. Extensive experiments on both real-world prototypes and simulations show that FedCG can provide up to 5.3$\times$ speedup compared to other methods.
translated by 谷歌翻译
联邦学习(FL)试图在本地客户端分发模型培训,而无需在集中式数据中心收集数据,从而消除了数据私人关系问题。 FL的一个主要挑战是数据异质性(每个客户的数据分布可能会有所不同),因为它可能导致本地客户的权重差异并减慢全球融合。当前专为数据异质性设计的SOTA FL方法通常会施加正则化以限制非IID数据的影响,并且是状态算法,即它们随着时间的推移维持局部统计数据。尽管有效,但这些方法只能用于FL的特殊情况,仅涉及少数可靠的客户。对于fl的更典型应用,客户端数量很大(例如,边缘设备和移动应用程序),这些方法无法应用,激发了对任何可用于任何数量客户端使用的无状态方法的无状态方法的需求。我们得出了一阶梯度正则化,以惩罚由于本地数据异质性而导致的本地更新不一致。具体而言,为了减轻权重差异,我们将全局数据分布的一阶近似引入本地目标,该目标凭直觉地惩罚了与全局更新相反方向的更新。最终结果是一种无状态的FL算法,可实现1)在非IID数据分布下,比SOTA方法明显更快地收敛(即较少的通信回合)和2)总体融合性能更高。重要的是,我们的方法不会对客户大小施加不切实际的限制,从而可以从大多数FL应用程序中向大量客户学习。
translated by 谷歌翻译
Federated learning (FL) on deep neural networks facilitates new applications at the edge, especially for wearable and Internet-of-Thing devices. Such devices capture a large and diverse amount of data, but they have memory, compute, power, and connectivity constraints which hinder their participation in FL. We propose Centaur, a multitier FL framework, enabling ultra-constrained devices to efficiently participate in FL on large neural nets. Centaur combines two major ideas: (i) a data selection scheme to choose a portion of samples that accelerates the learning, and (ii) a partition-based training algorithm that integrates both constrained and powerful devices owned by the same user. Evaluations, on four benchmark neural nets and three datasets, show that Centaur gains ~10% higher accuracy than local training on constrained devices with ~58% energy saving on average. Our experimental results also demonstrate the superior efficiency of Centaur when dealing with imbalanced data, client participation heterogeneity, and various network connection probabilities.
translated by 谷歌翻译
联合学习(FL)在分布式客户端上培训机器学习模型,而不会暴露单个数据。与通常基于仔细组织的数据的集中培训不同,FL处理通常不混阻和不平衡的设备数据。因此,处理所有数据的传统流行训练协议同样地导致浪费本地计算资源,并减慢全局学习过程。为此,我们提出了一个系统性的FLBalancer,它积极选择客户的培训样本。我们的示例选择策略在尊重客户端的隐私和计算能力的同时优先确定更多“信息性”数据。为了更好地利用样本选择来加速全球培训,我们进一步推出了一种自适应截止日期控制方案,该方案预测每个轮的最佳截止日期,具有不同的客户端列车数据。与具有截止日期配置方法的现有流算法相比,我们对三个不同域的五个数据集的评估表明,FedBalancer将时间至准确性的性能提高1.22〜4.62倍,同时提高模型精度1.0〜3.3%。我们还表明,通过展示在与三种不同的FL算法共同运行时,FedBalancer提高了收敛速度和准确性,可以随时适用于其他流动方法。
translated by 谷歌翻译
联合学习(FL)可以从云到资源限制的边缘设备分发机器学习工作负载。遗憾的是,当前的深网络不仅对边缘设备的推理和培训造成了太重,而且对于在带宽约束网络上传送更新,也太大了。在本文中,我们开发,实施和实验验证了所谓的联合动态稀疏训练(FEDDST)的新型FL框架,通过该训练可以通过该培训和培训复杂的神经网络,在设备上计算和网络内通信中具有基本上提高的效率。在FEDDST的核心是一个动态过程,可以从目标完整网络中提取和列出稀疏子网。通过这个方案,“两只鸟类用一块石头杀死:”而不是完整的模型,每个客户端都会对自己的稀疏网络进行有效的培训,并且在设备和云之间仅传输稀疏网络。此外,我们的结果表明,在流动训练期间的动态稀疏性更灵活地容纳比固定的共用稀疏面具的局部异质性。此外,动态稀疏性自然地引入了培训动态的“时间自化效应”,即使通过密集训练也会提高流程。在一个现实和挑战的非I.I.D。 FL Setting,FEDDST始终如一地优于我们的实验中的竞争算法:例如,在非IID CIFAR-10上的任何固定上传数据帽时,在给定相同的上传数据帽时,它会在FedVGM上获得令人印象深刻的精度优势;即使在上传数据帽2倍,也可以进一步展示FEDDST的疗效,即使FEDAVGM为2X,即使将FEDAVGM提供精度差距也会保持3%。代码可用:https://github.com/bibikar/feddst。
translated by 谷歌翻译