在本文中,我们通过整合具有离散的傅立叶变换(DFT)的复杂值和实值卷积神经网络(CNN)来提出一个新的EEG信号分类框架。所提出的神经网络架构由一个复杂值的卷积层,两个实值卷积层和三个完全连接的层组成。我们的方法可以有效利用DFT中包含的相信息。我们使用两个模拟的EEG信号和一个基准数据集验证我们的方法,并将其与两个广泛使用的框架进行比较。与对基准数据集进行分类的现有方法相比,我们的方法大大减少了所使用的参数的数量并提高了准确性,并显着提高了对模拟的EEG信号进行分类的性能。
translated by 谷歌翻译
上肢运动分类将输入信号映射到目标活动,是控制康复机器人技术的关键领域之一。分类器接受了康复系统的培训,以理解上肢无法正常工作的患者的欲望。肌电图(EMG)信号和脑电图(EEG)信号广泛用于上肢运动分类。通过分析实时脑电图和EMG信号的分类结果,系统可以理解用户的意图,并预测人们希望执行的事件。因此,它将为用户提供外部帮助,以协助一个人进行活动。但是,由于嘈杂的环境,并非所有用户都处理有效的脑电图和EMG信号。实时数据收集过程中的噪声污染了数据的有效性。此外,并非所有患者由于肌肉损伤和神经肌肉疾病而处理强大的EMG信号。为了解决这些问题,我们想提出一种新颖的决策级多传感器融合技术。简而言之,该系统将将EEG信号与EMG信号集成,从两个来源检索有效的信息以了解和预测用户的需求,从而提供帮助。通过对包含同时记录的脑电图和EMG信号的公开途径数据集进行测试,我们设法结论了新型系统的可行性和有效性。
translated by 谷歌翻译
准确诊断睡眠障碍对于临床评估和治疗至关重要。多元素摄影(PSG)长期以来用于检测各种睡眠障碍。在本研究中,心电图(ECG)和电磁影(EMG)已被用于识别呼吸和运动相关的睡眠障碍。除了使用SynchroSquezed小波变换(SSWT)开发迭代脉冲峰值检测算法之外,还通过提取EMG特征来执行生物信号处理,除了开发迭代脉冲峰值检测算法以获得来自ECG的心率和呼吸相关特征的可靠提取心率和呼吸相关的特征。深度学习框架旨在融入EMG和ECG功能。该框架已被用于对四组进行分类:健康受试者,患者阻塞性睡眠呼吸暂停(OSA),患者患者患者,患者患者和OSA和RLS患者。拟议的深度学习框架在我们制定的四类问题的主题中产生了平均准确性为72%,重量F1分数为0.57分。
translated by 谷歌翻译
目的:提出使用深神经网络(DNN)的新型SSVEP分类方法,提高单通道和用户独立的脑电电脑接口(BCIS)的性能,具有小的数据长度。方法:我们建议与DNN结合使用过滤器组(创建EEG信号的子带分量)。在这种情况下,我们创建了三种不同的模型:经常性的神经网络(FBRNN)分析时域,2D卷积神经网络(FBCNN-2D)处理复谱特征和3D卷积神经网络(FBCNN-3D)分析复杂谱图,我们在本研究中介绍了SSVEP分类的可能输入。我们通过开放数据集培训了我们的神经网络,并构思了它们,以便不需要从最终用户校准:因此,测试主题数据与训练和验证分开。结果:带滤波器银行的DNN超越了类似网络的准确性,在没有相当大的边距(高达4.6%)的情况下,它们甚至更高的边距(高达7.1%)超越了常见的SSVEP分类方法(SVM和FBCCA) 。在使用过滤器银行中的三个DNN中,FBRNN获得了最佳结果,然后是FBCNN-3D,最后由FBCNN-2D获得。结论和意义:滤波器银行允许不同类型的深神经网络,以更有效地分析SSVEP的谐波分量。复谱图比复杂频谱特征和幅度谱进行更多信息,允许FBCNN-3D超越另一个CNN。在具有挑战性的分类问题中获得的平均测试精度(87.3%)和F1分数(0.877)表示施工,经济,快速和低延迟BCIS建设的强大潜力。
translated by 谷歌翻译
基于脑电图(EEG)的脑生物识别技术已被越来越多地用于个人鉴定。传统的机器学习技术以及现代的深度学习方法已采用有希望的结果。在本文中,我们提出了EEG-BBNET,这是一个混合网络,该网络将卷积神经网络(CNN)与图形卷积神经网络(GCNN)集成在一起。 CNN在自动特征提取方面的好处以及GCNN通过图形表示在EEG电极之间学习连通性的能力被共同利用。我们检查了各种连通性度量,即欧几里得距离,皮尔逊的相关系数,相锁定值,相位滞后指数和RHO索引。在由各种脑部计算机界面(BCI)任务组成的基准数据集上评估了所提出的方法的性能,并将其与其他最先进的方法进行了比较。我们发现,使用会议内数据的平均正确识别率最高99.26%,我们的模型在事件相关电位(ERP)任务中的所有基线都优于所有基准。具有Pearson相关性和RHO指数的EEG-BBNET提供了最佳的分类结果。此外,我们的模型使用会议间和任务数据显示出更大的适应性。我们还研究了我们提出的模型的实用性,该模型的电极数量较少。额叶区域上的电极放置似乎最合适,性能损失最少。
translated by 谷歌翻译
近年来,深度学习显示了广泛区域的潜力和效率,包括计算机视觉,图像和信号处理。然而,由于缺乏算法决策和结果的解释性,用户应用程序仍然存在转化挑战。这个黑匣子问题对于高风险应用程序(例如与医疗相关的决策制定)尤其有问题。当前的研究目标是设计一个可解释的深度学习系统,用于对脑电图的时间序列分类(EEG)进行睡眠阶段评分,以此作为设计透明系统的一步。我们已经开发了一个可解释的深神经网络,该网络包括基于内核的层,该层是基于人类专家在视觉分析记录的视觉分析中用于睡眠评分的一组原理。将基于内核的卷积层定义并用作系统的第一层,并可用于用户解释。训练有素的系统及其结果从脑电图信号的微观结构(例如训练的内核)以及每个内核对检测到的阶段的效果,宏观结构(例如阶段之间的过渡)中解释了四个级别。拟议的系统表现出比先前的研究更大的性能,而解释的结果表明,该系统学习了与专家知识一致的信息。
translated by 谷歌翻译
在过去的几年中,深度学习用于脑电图(EEG)分类任务一直在迅速增长,但其应用程序受到EEG数据集相对较小的限制。数据扩展包括在培训过程中人为地增加数据集的大小,它一直是在计算机视觉或语音等应用程序中获得最新性能的关键要素。尽管文献中已经提出了一些脑电图数据的增强转换,但它们对跨任务的绩效的积极影响仍然难以捉摸。在这项工作中,我们提出了对主要现有脑电图增强的统一和详尽的分析,该分析在常见的实验环境中进行了比较。我们的结果强调了为睡眠阶段分类和大脑计算机界面界面的最佳数据增强,在某些情况下显示预测功率改善大于10%。
translated by 谷歌翻译
在脑电图(EEG)的驾驶员的背景下,设计无校准系统仍然具有挑战性,因为EEG信号在不同的主题和录音会话之间显着变化。已经努力使用EEG信号的深度学习方法来利用精神状态识别。然而,现有工作主要将深入学习模型视为黑匣子分类器,而模型已经学习的是什么以及它们在脑电图数据中受到噪声的影响仍然是曝光的。在本文中,我们开发了一种新颖的卷积神经网络,可以通过突出显示包含分类重要信息的输入样本的本地区域来解释其决定。该网络具有紧凑的结构,利用可分离卷曲来处理空间序列中的EEG信号。结果表明,该模型在11个受试者上实现了78.35%的平均准确性,用于休假交叉对象嗜睡识别,其高于传统的基线方法为53.4%-72.68%和最先进的深层学习方法63.90%-65.78%。可视化结果表明,该模型已经学会了识别EEG信号的生物学可解释的特征,例如,α主轴,作为不同受试者的嗜睡的强指标。此外,我们还探讨了一些错误分类的样本背后的原因,具有可视化技术,并讨论了提高识别准确性的潜在方法。我们的作品说明了使用可解释的深度学习模型的有希望的方向,以从复杂的EEG信号发现与不同心理状态相关的有意义的模式。
translated by 谷歌翻译
传统的脑电脑接口(BCI)需要在使用之前为每个用户提供完整的数据收集,训练和校准阶段。近年来,已经开发了许多主题独立的(SI)BCI。与受试者依赖性(SD)方法相比,这些方法中的许多方法产生较弱的性能,有些方法是计算昂贵的。潜在的真实世界应用程序将极大地受益于更准确,紧凑,并计算高效的主题的BCI。在这项工作中,我们提出了一个名为CCSPNET(卷积公共空间模式网络)的新型主题独立的BCI框架,该框架被训练在大型脑电图(EEG)信号数据库中的电动机图像(MI)范例上,由400个试验组成每54名科目执行两班手机MI任务。所提出的框架应用小波核卷积神经网络(WKCNN)和时间卷积神经网络(TCNN),以表示和提取EEG信号的光谱特征。对于空间特征提取来实现公共空间模式(CSP)算法,并且通过密集的神经网络减少了CSP特征的数量。最后,类标签由线性判别分析(LDA)分类器确定。 CCSPNET评估结果表明,可以具有紧凑的BCI,可实现与复杂和计算昂贵的模型相当的SD和SI最先进的性能。
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译
癫痫发作是最重要的神经障碍之一,其早期诊断将有助于临床医生为患者提供准确的治疗方法。脑电图(EEG)信号广泛用于癫痫癫痫发作检测,其提供了关于大脑功能的实质性信息的专家。本文介绍了采用模糊理论和深层学习技术的新型诊断程序。所提出的方法在Bonn大学数据集上进行了评估,具有六个分类组合以及弗赖堡数据集。可以使用可调谐Q小波变换(TQWT)来将EEG信号分解为不同的子带。在特征提取步骤中,从TQWT的不同子带计算了13个不同的模糊熵,并且计算它们的计算复杂性以帮助研究人员选择各种任务的最佳集合。在下文中,采用具有六层的AutoEncoder(AE)用于减少维数。最后,标准自适应神经模糊推理系统(ANFIS)以及其具有蚱蜢优化算法(ANFIS-GOA),粒子群优化(ANFIS-PSO)和育种群优化(ANFIS-BS)方法的变体分类。使用我们所提出的方法,ANFIS-BS方法在弗赖堡数据集上分为两类分为两类和准确度,在两类分类中获得99.46%的准确性,以及弗赖堡数据集的99.28%,达到最先进的两个人的表演。
translated by 谷歌翻译
本文提出了一种新的劣化和损坏识别程序(DIP)并应用于建筑模型。与这些类型的结构的应用相关的挑战与响应的强相关性有关,这在应对具有高噪声水平的真实环境振动时进一步复杂化。因此,利用低成本环境振动设计了DIP,以分析使用股票变换(ST)来产生谱图的加速响应。随后,ST输出成为建立的两系列卷积神经网络(CNNS)的输入,用于识别建筑模型的恶化和损坏。据我们所知,这是第一次通过高精度的ST和CNN组合在建筑模型中评估损坏和恶化。
translated by 谷歌翻译
One of the main challenges in electroencephalogram (EEG) based brain-computer interface (BCI) systems is learning the subject/session invariant features to classify cognitive activities within an end-to-end discriminative setting. We propose a novel end-to-end machine learning pipeline, EEG-NeXt, which facilitates transfer learning by: i) aligning the EEG trials from different subjects in the Euclidean-space, ii) tailoring the techniques of deep learning for the scalograms of EEG signals to capture better frequency localization for low-frequency, longer-duration events, and iii) utilizing pretrained ConvNeXt (a modernized ResNet architecture which supersedes state-of-the-art (SOTA) image classification models) as the backbone network via adaptive finetuning. On publicly available datasets (Physionet Sleep Cassette and BNCI2014001) we benchmark our method against SOTA via cross-subject validation and demonstrate improved accuracy in cognitive activity classification along with better generalizability across cohorts.
translated by 谷歌翻译
基于电动机图像(MI)的脑电脑界面(BCIS)允许通过解码神经生理现象来控制几种应用,这些现象通常通过使用非侵入性技术被脑电图(EEG)记录。尽管在基于MI的BCI的进展方面很大,但脑电图有特定于受试者和各种变化随时间。这些问题指出了提高分类绩效的重大挑战,特别是在独立的方式。为了克服这些挑战,我们提出了Min2Net,这是一个新的端到端多任务学习来解决这项任务。我们将深度度量学习集成到多任务AutoEncoder中,以从脑电图中学习紧凑且识别的潜在表示,并同时执行分类。这种方法降低了预处理的复杂性,导致EEG分类的显着性能改善。实验结果以本语独立的方式表明,MIN2Net优于最先进的技术,在SMR-BCI和OpenBMI数据集中分别实现了6.72%的F1分数提高,以及2.23%。我们证明MIN2NET在潜在代表中提高了歧视信息。本研究表明使用此模型的可能性和实用性为新用户开发基于MI的BCI应用,而无需校准。
translated by 谷歌翻译
在过去的二十年中,癫痫发作检测和预测算法迅速发展。然而,尽管性能得到了重大改进,但它们使用常规技术(例如互补的金属氧化物 - 轴导剂(CMO))进行的硬件实施,在权力和面积受限的设置中仍然是一项艰巨的任务;特别是当使用许多录音频道时。在本文中,我们提出了一种新型的低延迟平行卷积神经网络(CNN)体系结构,与SOTA CNN体系结构相比,网络参数少2-2,800倍,并且达到5倍的交叉验证精度为99.84%,用于癫痫发作检测,检测到99.84%。癫痫发作预测的99.01%和97.54%分别使用波恩大学脑电图(EEG),CHB-MIT和SWEC-ETHZ癫痫发作数据集进行评估。随后,我们将网络实施到包含电阻随机存储器(RRAM)设备的模拟横梁阵列上,并通过模拟,布置和确定系统中CNN组件的硬件要求来提供全面的基准。据我们所知,我们是第一个平行于在单独的模拟横杆上执行卷积层内核的人,与SOTA混合Memristive-CMOS DL加速器相比,潜伏期降低了2个数量级。此外,我们研究了非理想性对系统的影响,并研究了量化意识培训(QAT),以减轻由于ADC/DAC分辨率较低而导致的性能降解。最后,我们提出了一种卡住的重量抵消方法,以减轻因卡住的Ron/Roff Memristor重量而导致的性能降解,而无需再进行重新培训而恢复了高达32%的精度。我们平台的CNN组件估计在22nm FDSOI CMOS流程中占据31.255mm $^2 $的面积约为2.791W。
translated by 谷歌翻译
如今,提出了几种深度学习方法来应对癫痫发作预测的挑战。但是,由于其大型硬件和相应的高功率消耗,这些方法仍然无法作为可植入或有效的可穿戴设备的一部分实现。他们通常需要复杂的功能提取过程,用于存储高精度参数的大存储器和复杂的算术计算,从而大大增加了所需的硬件资源。此外,可用的预测性能差,因为它们直接从图像识别应用程序中采用网络体系结构无法准确考虑EEG信号的特征。我们在本文中提出了一个适合二进制卷积神经网络(BSDCNN)的硬件友好网络,用于癫痫发作预测。 BSDCNN利用1D卷积内核来提高预测性能。除了第一层外,所有参数均已二进制以减少所需的计算和存储。在美国癫痫社会癫痫发作预测挑战(AES)数据集和CHB-MIT方面,曲线,灵敏度和虚假预测率的总面积达到0.915、89.26%,0.117/h和0.970,94.69%,0.095/h。所提出的体系结构的表现优于最新作品,同时提供了7.2和25.5倍的参数和计算大小。
translated by 谷歌翻译
分布式声音传感器(DAS)是有效的设备,在许多应用区域中广泛使用,用于记录各种事件的信号,这些事件沿光纤沿光纤沿着非常高的空间分辨率。为了正确地检测和识别记录的事件,具有高计算需求的高级信号处理算法至关重要。卷积神经网络是提取空间信息的高功能工具,非常适合DAS中的事件识别应用。长期术语内存(LSTM)是处理顺序数据的有效仪器。在这项研究中,我们提出了一种多输入的多输出,两个阶段特征提取方法,该方法将这些神经网络体系结构的能力与转移学习的能力结合在一起,以将压电传感器应用于光纤上的振动进行分类。首先,我们从相位-OTDR记录中提取了差幅度和相位信息,并将它们存储在时间空间数据矩阵中。然后,我们在第一阶段使用了最先进的预训练的CNN作为特征提取器。在第二阶段,我们使用LSTMS进一步分析了CNN提取的特征。最后,我们使用密集层来对提取的特征进行分类。为了观察使用的CNN体​​系结构的效果,我们通过五个最先进的预训练模型(VGG-16,Resnet-50,Densenet-121,Mobilenet和Inception-V3)测试了模型。结果表明,在我们的框架中使用VGG-16体系结构可以在50个培训中获得100%的分类精度,并在我们的相位数据集中获得最佳结果。这项研究的结果表明,与LSTM结合的预训练的CNN非常适合分析差分振幅和相位信息,在时间空间数据矩阵中表示,这对于DAS应用中的事件识别操作很有希望。
translated by 谷歌翻译
通过脑电图信号的情绪分类取得了许多进步。但是,诸如缺乏数据和学习重要特征和模式之类的问题始终是具有在计算和预测准确性方面改进的领域。这项工作分析了基线机器学习分类器在DEAP数据集上的性能以及一种表格学习方法,该方法提供了最新的可比结果,从而利用了性能提升,这是由于其深度学习架构而无需部署重型神经网络。
translated by 谷歌翻译
第五代(5G)网络和超越设想巨大的东西互联网(物联网)推出,以支持延长现实(XR),增强/虚拟现实(AR / VR),工业自动化,自主驾驶和智能所有带来的破坏性应用一起占用射频(RF)频谱的大规模和多样化的IOT设备。随着频谱嘎嘎和吞吐量挑战,这种大规模的无线设备暴露了前所未有的威胁表面。 RF指纹识别是预约的作为候选技术,可以与加密和零信任安全措施相结合,以确保无线网络中的数据隐私,机密性和完整性。在未来的通信网络中,在这项工作中,在未来的通信网络中的相关性,我们对RF指纹识别方法进行了全面的调查,从传统观点到最近的基于深度学习(DL)的算法。现有的调查大多专注于无线指纹方法的受限制呈现,然而,许多方面仍然是不可能的。然而,在这项工作中,我们通过解决信号智能(SIGINT),应用程序,相关DL算法,RF指纹技术的系统文献综述来缓解这一点,跨越过去二十年的RF指纹技术的系统文献综述,对数据集和潜在研究途径的讨论 - 必须以百科全书的方式阐明读者的必要条件。
translated by 谷歌翻译
本文提出了一种基于离散小波变换(DWT)和机器学习分类器的癫痫检测方法。这里DWT已被用于特征提取,因为它提供了更好地分解了不同频带中的信号。首先,DWT已被应用于EEG信号以提取细节和近似系数或不同的子带。在提取系数之后,主成分分析(PCA)已经应用于不同的子带,然后使用特征级融合技术来提取低维特征空间中的重要特征。三个分类器即:支持向量机(SVM)分类器,K-Cirelte-邻(KNN)分类器和NAIVE Bayes(NB)分类器已用于分类EEG信号的工作中。该方法在Bonn数据库上进行了测试,并为KNN,SVM,NB分类器提供最多100%的识别精度。
translated by 谷歌翻译