在这项工作中,我们提出了一个新的和一般的框架来防御后门攻击,灵感来自攻击触发器通常遵循\ textsc {特定}类型的攻击模式,因此,中毒训练示例在彼此期间对彼此产生更大的影响训练。我们介绍了{\ IT影响图}的概念,它包括分别代表各个训练点和相关的对方式的节点和边缘组成。一对训练点之间的影响代表了去除一个训练点对另一个训练点的影响,由影响函数\ citep {koh2017understanding}近似。通过查找特定大小的最大平均子图来提取恶意训练点。关于计算机视觉和自然语言处理任务的广泛实验证明了所提出的框架的有效性和一般性。
translated by 谷歌翻译
The frustratingly fragile nature of neural network models make current natural language generation (NLG) systems prone to backdoor attacks and generate malicious sequences that could be sexist or offensive. Unfortunately, little effort has been invested to how backdoor attacks can affect current NLG models and how to defend against these attacks. In this work, by giving a formal definition of backdoor attack and defense, we investigate this problem on two important NLG tasks, machine translation and dialog generation. Tailored to the inherent nature of NLG models (e.g., producing a sequence of coherent words given contexts), we design defending strategies against attacks. We find that testing the backward probability of generating sources given targets yields effective defense performance against all different types of attacks, and is able to handle the {\it one-to-many} issue in many NLG tasks such as dialog generation. We hope that this work can raise the awareness of backdoor risks concealed in deep NLG systems and inspire more future work (both attack and defense) towards this direction.
translated by 谷歌翻译
后门攻击对NLP模型构成了新的威胁。在后门攻击中构建中毒数据的标准策略是将触发器(例如,稀有字)插入所选句子,并将原始标签更改为目标标签。该策略具有从触发器和标签视角轻松检测到的严重缺陷:注入的触发器,通常是一种罕见的单词,导致异常的自然语言表达,因此可以通过防御模型容易地检测到异常的自然语言表达;改变的目标标签会导致误报标记的示例,因此可以通过手动检查容易地检测到。要处理此问题,请在本文中,我们提出了一种新的策略来执行不需要外部触发的文本后门攻击,并且中毒样品被正确标记。拟议策略的核心思想是构建清洁标记的例子,其标签是正确的,但可以导致测试标签在与培训集合融合时的变化。为了产生中毒清洁标记的例子,我们提出了一种基于遗传算法的句子生成模型,以满足文本数据的不可微差特性。广泛的实验表明,拟议的攻击策略不仅有效,而且更重要的是,由于其令人触发和清洁的性质,难以防御。我们的工作标志着在NLP中开发令人触发的攻击策略的第一步。
translated by 谷歌翻译
最近,已经表明,自然语言处理(NLP)模型容易受到一种称为后门攻击的安全威胁,它利用“后门触发器”范例误导模型。最威胁的后门攻击是隐身的后门,它将触发器定义为文本样式或句法。虽然他们已经取得了令人难以置信的高攻击成功率(ASR),但我们发现为ASR的主要因素贡献不是“后门触发”范式。因此,当作为后门攻击分类时,这些隐身后门攻击的能力大得多。因此,为了评估后门攻击的真正攻击力,我们提出了一种称为攻击成功率差异(ASRD)的新度量,从而测量干净状态和毒药状态模型之间的ASR差异。此外,由于对抗隐蔽的后门攻击的防御,我们提出了触发破坏者,包括两个太简单的技巧,可以有效地防御隐秘的后门攻击。关于文本分类任务的实验表明,我们的方法比对隐身后门攻击的最先进的防御方法实现了更好的性能。
translated by 谷歌翻译
后门攻击是对深度神经网络(DNN)的一种紧急培训时间威胁。它们可以操纵DNN的输出并具有高度思虑。在自然语言处理领域,已经提出了一些攻击方法,并在多个流行型号上实现了非常高的攻击成功率。尽管如此,很少有关于捍卫文本后门攻击的研究。在本文中,我们提出了一个简单且有效的文本后门防御,名为洋葱,这是基于异常字检测,并据我们所知,是可以处理所有文本后门攻击情况的第一种方法。实验证明了我们模型在捍卫Bilstm和BERT的措施与五种不同的后门攻击的有效性。本文的所有代码和数据都可以在https://github.com/thunlp/onion获得。
translated by 谷歌翻译
文本后门攻击是对NLP系统的实际威胁。通过在训练阶段注入后门,对手可以通过预定义的触发器控制模型预测。由于已经提出了各种攻击和防御模型,因此进行严格的评估至关重要。但是,我们在以前的后门学习评估中重点介绍了两个问题:(1)忽略了现实世界情景(例如释放中毒的数据集或模型)之间的差异,我们认为每种情况都有其自身的限制和关注点,因此需要特定的评估。协议; (2)评估指标仅考虑攻击是否可以翻转模型对中毒样品的预测并保留对良性样品的表演,但是忽略了中毒样品也应该是隐秘和语义上的。为了解决这些问题,我们将现有作品分为三种实际情况,在这种情况下,攻击者分别释放数据集,预培训模型和微调模型,然后讨论其独特的评估方法。关于指标,为了完全评估中毒样本,我们使用语法误差增加和隐形性差异以及有效性的文本相似性。对框架进行正式化后,我们开发了一个开源工具包openbackdoor,以促进文本后门学习的实现和评估。使用此工具包,我们在建议的范式下进行基准攻击和防御模型进行广泛的实验。为了促进针对中毒数据集的不充分的防御能力,我们进一步提出了Cube,这是一个简单而强大的基于聚类的防御基线。我们希望我们的框架和基准可以作为未来模型开发和评估的基石。
translated by 谷歌翻译
We conduct a systematic study of backdoor vulnerabilities in normally trained Deep Learning models. They are as dangerous as backdoors injected by data poisoning because both can be equally exploited. We leverage 20 different types of injected backdoor attacks in the literature as the guidance and study their correspondences in normally trained models, which we call natural backdoor vulnerabilities. We find that natural backdoors are widely existing, with most injected backdoor attacks having natural correspondences. We categorize these natural backdoors and propose a general detection framework. It finds 315 natural backdoors in the 56 normally trained models downloaded from the Internet, covering all the different categories, while existing scanners designed for injected backdoors can at most detect 65 backdoors. We also study the root causes and defense of natural backdoors.
translated by 谷歌翻译
有针对性的训练集攻击将恶意实例注入训练集中,以导致训练有素的模型错误地标记一个或多个特定的测试实例。这项工作提出了目标识别的任务,该任务决定了特定的测试实例是否是训练集攻击的目标。目标识别可以与对抗性识别相结合,以查找(并删除)攻击实例,从而减轻对其他预测的影响,从而减轻攻击。我们没有专注于单个攻击方法或数据模式,而是基于影响力估计,这量化了每个培训实例对模型预测的贡献。我们表明,现有的影响估计量的不良实际表现通常来自于他们对训练实例和迭代次数的过度依赖。我们重新归一化的影响估计器解决了这一弱点。他们的表现远远超过了原始估计量,可以在对抗和非对抗环境中识别有影响力的训练示例群体,甚至发现多达100%的对抗训练实例,没有清洁数据误报。然后,目标识别简化以检测具有异常影响值的测试实例。我们证明了我们的方法对各种数据域的后门和中毒攻击的有效性,包括文本,视觉和语音,以及针对灰色盒子的自适应攻击者,该攻击者专门优化了逃避我们方法的对抗性实例。我们的源代码可在https://github.com/zaydh/target_indistification中找到。
translated by 谷歌翻译
计算能力和大型培训数据集的可用性增加,机器学习的成功助长了。假设它充分代表了在测试时遇到的数据,则使用培训数据来学习新模型或更新现有模型。这种假设受到中毒威胁的挑战,这种攻击会操纵训练数据,以损害模型在测试时的表现。尽管中毒已被认为是行业应用中的相关威胁,到目前为止,已经提出了各种不同的攻击和防御措施,但对该领域的完整系统化和批判性审查仍然缺失。在这项调查中,我们在机器学习中提供了中毒攻击和防御措施的全面系统化,审查了过去15年中该领域发表的100多篇论文。我们首先对当前的威胁模型和攻击进行分类,然后相应地组织现有防御。虽然我们主要关注计算机视觉应用程序,但我们认为我们的系统化还包括其他数据模式的最新攻击和防御。最后,我们讨论了中毒研究的现有资源,并阐明了当前的局限性和该研究领域的开放研究问题。
translated by 谷歌翻译
视觉变压器(VITS)具有与卷积神经网络相比,具有较小的感应偏置的根本不同的结构。随着绩效的提高,VIT的安全性和鲁棒性也非常重要。与许多最近利用VIT反对对抗性例子的鲁棒性的作品相反,本文调查了代表性的病因攻击,即后门。我们首先检查了VIT对各种后门攻击的脆弱性,发现VIT也很容易受到现有攻击的影响。但是,我们观察到,VIT的清洁数据准确性和后门攻击成功率在位置编码之前对补丁转换做出了明显的反应。然后,根据这一发现,我们为VIT提出了一种通过补丁处理来捍卫基于补丁的触发后门攻击的有效方法。在包括CIFAR10,GTSRB和Tinyimagenet在内的几个基准数据集上评估了这些表演,这些数据表明,该拟议的新颖防御在减轻VIT的后门攻击方面非常成功。据我们所知,本文提出了第一个防御性策略,该策略利用了反对后门攻击的VIT的独特特征。
translated by 谷歌翻译
特洛伊木马攻击引起了严重的安全问题。在本文中,我们研究了Trojaned Bert模型的潜在机制。我们观察到木马模型的注意力焦点漂移行为,即,在遇到中毒输入时,触发令牌劫持了注意力的焦点,无论上下文如何。我们对这种现象提供了彻底的定性和定量分析,揭示了对特洛伊木马机制的见解。基于观察结果,我们提出了一个基于注意力的特洛伊木马检测器,以将木马模型与干净的模型区分开。据我们所知,这是第一篇分析特洛伊木马机制并根据变压器的注意力开发特洛伊木马检测器的论文。
translated by 谷歌翻译
后门攻击已被证明是对深度学习模型的严重安全威胁,并且检测给定模型是否已成为后门成为至关重要的任务。现有的防御措施主要建立在观察到后门触发器通常尺寸很小或仅影响几个神经元激活的观察结果。但是,在许多情况下,尤其是对于高级后门攻击,违反了上述观察结果,阻碍了现有防御的性能和适用性。在本文中,我们提出了基于新观察的后门防御范围。也就是说,有效的后门攻击通常需要对中毒训练样本的高预测置信度,以确保训练有素的模型具有很高的可能性。基于此观察结果,Dtinspector首先学习一个可以改变最高信心数据的预测的补丁,然后通过检查在低信心数据上应用学习补丁后检查预测变化的比率来决定后门的存在。对五次后门攻击,四个数据集和三种高级攻击类型的广泛评估证明了拟议防御的有效性。
translated by 谷歌翻译
在对抗机器学习中,防止对深度学习系统的攻击的新防御能力在释放更强大的攻击后不久就会破坏。在这种情况下,法医工具可以通过追溯成功的根本原因来为现有防御措施提供宝贵的补充,并为缓解措施提供前进的途径,以防止将来采取类似的攻击。在本文中,我们描述了我们为开发用于深度神经网络毒物攻击的法医追溯工具的努力。我们提出了一种新型的迭代聚类和修剪解决方案,该解决方案修剪了“无辜”训练样本,直到所有剩余的是一组造成攻击的中毒数据。我们的方法群群训练样本基于它们对模型参数的影响,然后使用有效的数据解读方法来修剪无辜簇。我们从经验上证明了系统对三种类型的肮脏标签(后门)毒物攻击和三种类型的清洁标签毒药攻击的功效,这些毒物跨越了计算机视觉和恶意软件分类。我们的系统在所有攻击中都达到了98.4%的精度和96.8%的召回。我们还表明,我们的系统与专门攻击它的四种抗纤维法措施相对强大。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
图形神经网络(GNNS)在许多图形挖掘任务中取得了巨大的成功,这些任务从消息传递策略中受益,该策略融合了局部结构和节点特征,从而为更好的图表表示学习。尽管GNN成功,并且与其他类型的深神经网络相似,但发现GNN容易受到图形结构和节点特征的不明显扰动。已经提出了许多对抗性攻击,以披露在不同的扰动策略下创建对抗性例子的GNN的脆弱性。但是,GNNS对成功后门攻击的脆弱性直到最近才显示。在本文中,我们披露了陷阱攻击,这是可转移的图形后门攻击。核心攻击原则是用基于扰动的触发器毒化训练数据集,这可以导致有效且可转移的后门攻击。图形的扰动触发是通过通过替代模型的基于梯度的得分矩阵在图形结构上执行扰动动作来生成的。与先前的作品相比,陷阱攻击在几种方面有所不同:i)利用替代图卷积网络(GCN)模型来生成基于黑盒的后门攻击的扰动触发器; ii)它产生了没有固定模式的样品特异性扰动触发器; iii)在使用锻造中毒训练数据集训练时,在GNN的背景下,攻击转移到了不同​​的GNN模型中。通过对四个现实世界数据集进行广泛的评估,我们证明了陷阱攻击使用四个现实世界数据集在四个不同流行的GNN中构建可转移的后门的有效性
translated by 谷歌翻译
Pre-trained language models allowed us to process downstream tasks with the help of fine-tuning, which aids the model to achieve fairly high accuracy in various Natural Language Processing (NLP) tasks. Such easily-downloaded language models from various websites empowered the public users as well as some major institutions to give a momentum to their real-life application. However, it was recently proven that models become extremely vulnerable when they are backdoor attacked with trigger-inserted poisoned datasets by malicious users. The attackers then redistribute the victim models to the public to attract other users to use them, where the models tend to misclassify when certain triggers are detected within the training sample. In this paper, we will introduce a novel improved textual backdoor defense method, named MSDT, that outperforms the current existing defensive algorithms in specific datasets. The experimental results illustrate that our method can be effective and constructive in terms of defending against backdoor attack in text domain. Code is available at https://github.com/jcroh0508/MSDT.
translated by 谷歌翻译
在这项工作中,我们向图形神经网络(GNN)提出了第一个后门攻击。具体而言,我们向GNN提出一个\ emph {子画面的后门攻击},用于图表分类。在我们的后门攻击中,一旦预定义的子图注入测试图,GNN分类器就预测测试图的攻击者所选择的目标标签。我们在三个真实世界图数据集上的经验结果表明,我们的后门攻击对GNN的预测准确性的影响很小,对清洁测试图进行了很小影响。此外,我们概括了基于随机的平滑的认证防御来防御我们的后门攻击。我们的经验结果表明,在某些情况下,防御是有效的,但在其他情况下无效,突出了我们的后门攻击的新防御的需求。
translated by 谷歌翻译
与令人印象深刻的进步触动了我们社会的各个方面,基于深度神经网络(DNN)的AI技术正在带来越来越多的安全问题。虽然在考试时间运行的攻击垄断了研究人员的初始关注,但是通过干扰培训过程来利用破坏DNN模型的可能性,代表了破坏训练过程的可能性,这是破坏AI技术的可靠性的进一步严重威胁。在后门攻击中,攻击者损坏了培训数据,以便在测试时间诱导错误的行为。然而,测试时间误差仅在存在与正确制作的输入样本对应的触发事件的情况下被激活。通过这种方式,损坏的网络继续正常输入的预期工作,并且只有当攻击者决定激活网络内隐藏的后门时,才会发生恶意行为。在过去几年中,后门攻击一直是强烈的研究活动的主题,重点是新的攻击阶段的发展,以及可能对策的提议。此概述文件的目标是审查发表的作品,直到现在,分类到目前为止提出的不同类型的攻击和防御。指导分析的分类基于攻击者对培训过程的控制量,以及防御者验证用于培训的数据的完整性,并监控DNN在培训和测试中的操作时间。因此,拟议的分析特别适合于参考他们在运营的应用方案的攻击和防御的强度和弱点。
translated by 谷歌翻译
最近的研究表明,深层神经网络容易受到不同类型的攻击,例如对抗性攻击,数据中毒攻击和后门攻击。其中,后门攻击是最狡猾的攻击,几乎可以在深度学习管道的每个阶段发生。因此,后门攻击吸引了学术界和行业的许多兴趣。但是,大多数现有的后门攻击方法对于某些轻松的预处理(例如常见数据转换)都是可见的或脆弱的。为了解决这些限制,我们提出了一种强大而无形的后门攻击,称为“毒药”。具体而言,我们首先利用图像结构作为目标中毒区域,并用毒药(信息)填充它们以生成触发图案。由于图像结构可以在数据转换期间保持其语义含义,因此这种触发模式对数据转换本质上是强大的。然后,我们利用深度注射网络将这种触发模式嵌入封面图像中,以达到隐身性。与现有流行的后门攻击方法相比,毒药的墨水在隐形和健壮性方面都优于表现。通过广泛的实验,我们证明了毒药不仅是不同数据集和网络体系结构的一般性,而且对于不同的攻击场景也很灵活。此外,它对许多最先进的防御技术也具有非常强烈的抵抗力。
translated by 谷歌翻译
随着深度神经网络(DNN)的广泛应用,后门攻击逐渐引起了人们的关注。后门攻击是阴险的,中毒模型在良性样本上的表现良好,只有在给定特定输入时才会触发,这会导致神经网络产生不正确的输出。最先进的后门攻击工作是通过数据中毒(即攻击者注入中毒样品中的数据集中)实施的,并且用该数据集训练的模型被后门感染。但是,当前研究中使用的大多数触发因素都是在一小部分图像上修补的固定图案,并且经常被明显错误地标记,这很容易被人类或防御方法(例如神经清洁和前哨)检测到。同样,DNN很难在没有标记的情况下学习,因为它们可能会忽略小图案。在本文中,我们提出了一种基于频域的广义后门攻击方法,该方法可以实现后门植入而不会错标和访问训练过程。它是人类看不见的,能够逃避常用的防御方法。我们在三个数据集(CIFAR-10,STL-10和GTSRB)的无标签和清洁标签案例中评估了我们的方法。结果表明,我们的方法可以在所有任务上实现高攻击成功率(高于90%),而不会在主要任务上进行大量绩效降解。此外,我们评估了我们的方法的旁路性能,以进行各种防御措施,包括检测训练数据(即激活聚类),输入的预处理(即过滤),检测输入(即Sentinet)和检测模型(即神经清洁)。实验结果表明,我们的方法对这种防御能力表现出极好的鲁棒性。
translated by 谷歌翻译