单个设备负载和能量消耗反馈是追求用户节省住宅能源的重要方法之一。这可以帮助在未使用时通过设备识别错误的设备并通过设备浪费能量。主要挑战是身份和估计每个设备上没有侵入式传感器的单个设备的能耗。非侵入性负荷监测(尼芯)或能量分解,是一种盲源分离问题,需要一个系统来估计来自聚合的家庭能量消耗的单个设备的电力使用。在本文中,我们提出了一种基于深度神经网络的基于深度神经网络的方法,用于在居住户口获得的低频电力数据上进行负载分解。我们将一系列一维卷积神经网络和长短期存储器(1D CNN-LSTM)组合以提取可以识别主动设备的特征,并给出聚合的家庭功率值的功耗。我们使用CNN在给定的时间帧中从主读取中提取特征,然后使用这些功能来分类给定设备在该时间段内是否有效。在此之后,提取的功能用于使用LSTM来模拟生成问题。我们训练LSTM以产生特定设备的分列的能耗。我们的神经网络能够产生需求方的详细反馈,为最终用户提供了重要的洞察力。该算法设计用于低功耗离线设备,如ESP32。实证计算表明,我们的模型优于参考能量分类数据集(REDD)的最先进。
translated by 谷歌翻译
非侵入性负载监控(NILM)是将总功率消耗分为单个子组件的任务。多年来,已经合并了信号处理和机器学习算法以实现这一目标。关于最先进的方法,进行了许多出版物和广泛的研究工作,以涉及最先进的方法。科学界最初使用机器学习工具的尼尔姆问题制定和描述的最初兴趣已经转变为更实用的尼尔姆。如今,我们正处于成熟的尼尔姆时期,在现实生活中的应用程序方案中尝试使用尼尔姆。因此,算法的复杂性,可转移性,可靠性,实用性和普遍的信任度是主要的关注问题。这篇评论缩小了早期未成熟的尼尔姆时代与成熟的差距。特别是,本文仅对住宅电器的尼尔姆方法提供了全面的文献综述。本文分析,总结并介绍了大量最近发表的学术文章的结果。此外,本文讨论了这些方法的亮点,并介绍了研究人员应考虑的研究困境,以应用尼尔姆方法。最后,我们表明需要将传统分类模型转移到一个实用且值得信赖的框架中。
translated by 谷歌翻译
能源管理系统(EMS)依靠(非)感知负载监控(N)ILM来监视和管理设备,并帮助居民更加节能,因此更节俭。由于对相对有限的数据进行了训练和评估,因此(n)ILM最有前途的机器学习解决方案的普遍性以及转移潜力尚未完全理解。在本文中,我们提出了一种基于时间序列和转移学习的维度扩展的建筑EMS(BEM)(BEM)的新方法。我们对5个不同的低频数据集进行了广泛的评估。提出的使用视频转换和深度学习体系结构的特征维度扩展可在数据集中获得29个设备的平均加权F1得分为0.88,并且与最先进的图像相比,计算效率高达6倍。研究%的跨数据库转移学习方法的适用性,我们发现1)我们的方法的平均加权F1得分为0.80,而与非转移方法相比,模型训练的时期较少3倍,2 )只有230个数据样本即可达到0.75的F1得分,3)我们的转移方法的优于最先进的精确降低,最多可在未见电器上降低12个百分点
translated by 谷歌翻译
能量分解估计的单仪表逐一逐个电能量,以衡量整个房屋的电力需求。与侵入性负载监测相比,尼尔姆(非侵入性负载监控)是低成本,易于部署和灵活的。在本文中,我们提出了一种新方法,即创建的IMG-NILM,该方法利用卷积神经网络(CNN)来分解表示为图像的电力数据。事实证明,CNN具有图像有效,因此,将数据作为时间序列而不是传统的电力表示,而是将其转换为热图,而较高的电读数则被描绘成“更热”的颜色。然后在CNN中使用图像表示来检测来自聚合数据的设备的签名。 IMG-NILM是灵活的,在分解各种类型的设备方面表现出一致的性能;包括单个和多个状态。它在单个房屋内的英国戴尔数据集中达到了高达93%的测试准确性,那里有大量设备。在从不同房屋中收集电力数据的更具挑战性的环境中,IMG-NILM的平均准确度也非常好,为85%。
translated by 谷歌翻译
非侵入性负载监控(NILM)试图通过从单个骨料测量中估算单个设备功率使用来节省能源。深度神经网络在尝试解决尼尔姆问题方面变得越来越流行。但是,大多数使用的模型用于负载识别,而不是在线源分离。在源分离模型中,大多数使用单任务学习方法,其中神经网络专门为每个设备培训。该策略在计算上是昂贵的,并且忽略了多个电器可以同时活跃的事实和它们之间的依赖性。其余模型不是因果关系,这对于实时应用很重要。受语音分离模型Convtas-Net的启发,我们提出了Conv-Nilm-Net,这是端到端尼尔姆的完全卷积框架。 Conv-NILM-NET是多元设备源分离的因果模型。我们的模型在两个真实数据集和英国销售的两个真实数据集上进行了测试,并且显然超过了最新技术的状态,同时保持尺寸明显小于竞争模型。
translated by 谷歌翻译
公共收费站占用预测在开发智能充电策略方面发挥了重要意义,以减少电动车辆(EV)操作员和用户不便。然而,现有研究主要基于具有有限的准确度的传统经济学或时间序列方法。我们提出了一种新的混合长期内记忆神经网络,其包括历史充电状态序列和时间相关的特征,用于多步离散充电占用状态预测。与现有的LSTM网络不同,所提出的模型将不同类型的特征分开,并用混合神经网络架构处理它们。该模型与许多最先进的机器学习和深度学习方法进行了比较,基于从英国邓迪市的开放数据门户网站获得的EV充电数据。结果表明,该方法分别产生非常准确的预测(99.99%和81.87%,分别前进(10分钟)和6个步骤(1小时),优于基准接近的(+ 22.4%)前方预测和6步前方的预测和6.2%)。进行灵敏度分析,以评估模型参数对预测精度的影响。
translated by 谷歌翻译
海洋生态系统及其鱼类栖息地越来越重要,因为它们在提供有价值的食物来源和保护效果方面的重要作用。由于它们的偏僻且难以接近自然,因此通常使用水下摄像头对海洋环境和鱼类栖息地进行监测。这些相机产生了大量数字数据,这些数据无法通过当前的手动处理方法有效地分析,这些方法涉及人类观察者。 DL是一种尖端的AI技术,在分析视觉数据时表现出了前所未有的性能。尽管它应用于无数领域,但仍在探索其在水下鱼类栖息地监测中的使用。在本文中,我们提供了一个涵盖DL的关键概念的教程,该教程可帮助读者了解对DL的工作原理的高级理解。该教程还解释了一个逐步的程序,讲述了如何为诸如水下鱼类监测等挑战性应用开发DL算法。此外,我们还提供了针对鱼类栖息地监测的关键深度学习技术的全面调查,包括分类,计数,定位和细分。此外,我们对水下鱼类数据集进行了公开调查,并比较水下鱼类监测域中的各种DL技术。我们还讨论了鱼类栖息地加工深度学习的新兴领域的一些挑战和机遇。本文是为了作为希望掌握对DL的高级了解,通过遵循我们的分步教程而为其应用开发的海洋科学家的教程,并了解如何发展其研究,以促进他们的研究。努力。同时,它适用于希望调查基于DL的最先进方法的计算机科学家,以进行鱼类栖息地监测。
translated by 谷歌翻译
可持续性需要提高能源效率,而最小的废物则需要提高能源效率。因此,未来的电力系统应提供高水平的灵活性IIN控制能源消耗。对于能源行业的决策者和专业人员而言,对未来能源需求/负载的精确预测非常重要。预测能源负载对能源提供者和客户变得更有优势,使他们能够建立有效的生产策略以满足需求。这项研究介绍了两个混合级联模型,以预测不同分辨率中的多步户家庭功耗。第一个模型将固定小波变换(SWT)集成为有效的信号预处理技术,卷积神经网络和长期短期记忆(LSTM)。第二种混合模型将SWT与名为Transformer的基于自我注意的神经网络结构相结合。使用时频分析方法(例如多步预测问题中的SWT)的主要限制是,它们需要顺序信号,在多步骤预测应用程序中有问题的信号重建问题。级联模型可以通过使用回收输出有效地解决此问题。实验结果表明,与现有的多步电消耗预测方法相比,提出的混合模型实现了出色的预测性能。结果将为更准确和可靠的家庭用电量预测铺平道路。
translated by 谷歌翻译
负载预测在电力系统的分析和网格计划中至关重要。因此,我们首先提出一种基于联邦深度学习和非侵入性负载监测(NILM)的家庭负载预测方法。就我们所知,这是基于尼尔姆的家庭负载预测中有关联合学习(FL)的首次研究。在这种方法中,通过非侵入性负载监控将集成功率分解为单个设备功率,并且使用联合深度学习模型分别预测单个设备的功率。最后,将单个设备的预测功率值聚合以形成总功率预测。具体而言,通过单独预测电气设备以获得预测的功率,它可以避免由于单个设备的功率信号的强烈依赖性而造成的误差。在联邦深度学习预测模型中,具有权力数据的家主共享本地模型的参数,而不是本地电源数据,从而保证了家庭用户数据的隐私。案例结果表明,所提出的方法比直接预测整个汇总信号的传统方法提供了更好的预测效果。此外,设计和实施了各种联合学习环境中的实验,以验证该方法的有效性。
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
人工神经网络(ANN)能够学习,纠正错误和将大量原始数据转化为治疗和护理的有用医疗决策,这增加了增强患者安全和护理质量的普及。因此,本文审查了ANN的关键作用为患者医疗保健决策提供有价值的见解和有效的疾病诊断。我们彻底审查了现有文献中的不同类型的ANN,以便为复杂应用程序进行高级ANNS适配。此外,我们还调查Ann的各种疾病诊断和治疗的进步,例如病毒,皮肤,癌症和Covid-19。此外,我们提出了一种名为ConxNet的新型深度卷积神经网络(CNN)模型,用于提高Covid-19疾病的检测准确性。 ConxNet经过培训并使用不同的数据集进行测试,它达到了超过97%的检测精度和精度,这明显优于现有型号。最后,我们突出了未来的研究方向和挑战,例如算法的复杂性,可用数据,隐私和安全性,以及与ANN的生物传染集成。这些研究方向需要大幅关注改善医疗诊断和治疗应用的ANN的范围。
translated by 谷歌翻译
预测住宅功率使用对于辅助智能电网来管理和保护能量以确保有效使用的必不可少。客户级别的准确能量预测将直接反映电网系统的效率,但由于许多影响因素,例如气象和占用模式,预测建筑能源使用是复杂的任务。在成瘾中,鉴于多传感器环境的出现以及能量消费者和智能电网之间的两种方式通信,在能量互联网(IOE)中,高维时间序列越来越多地出现。因此,能够计算高维时间序列的方法在智能建筑和IOE应用中具有很大的价值。模糊时间序列(FTS)模型作为数据驱动的非参数模型的易于实现和高精度。不幸的是,如果所有功能用于训练模型,现有的FTS模型可能是不可行的。我们通过将原始高维数据投入低维嵌入空间并在该低维表示中使用多变量FTS方法来提出一种用于处理高维时间序列的新方法。组合这些技术使得能够更好地表示多变量时间序列的复杂内容和更准确的预测。
translated by 谷歌翻译
在视频中,人类的行为是三维(3D)信号。这些视频研究了人类行为的时空知识。使用3D卷积神经网络(CNN)研究了有希望的能力。 3D CNN尚未在静止照片中为其建立良好的二维(2D)等效物获得高输出。董事会3D卷积记忆和时空融合面部训练难以防止3D CNN完成非凡的评估。在本文中,我们实施了混合深度学习体系结构,该体系结构结合了Stip和3D CNN功能,以有效地增强3D视频的性能。实施后,在每个时空融合圈中进行训练的较详细和更深的图表。训练模型在处理模型的复杂评估后进一步增强了结果。视频分类模型在此实现模型中使用。引入了使用深度学习的多媒体数据分类的智能3D网络协议,以进一步了解人类努力中的时空关联。在实施结果时,著名的数据集(即UCF101)评估了提出的混合技术的性能。结果击败了提出的混合技术,该混合动力技术基本上超过了最初的3D CNN。将结果与文献的最新框架进行比较,以识别UCF101的行动识别,准确度为95%。
translated by 谷歌翻译
Semiconductor lasers, one of the key components for optical communication systems, have been rapidly evolving to meet the requirements of next generation optical networks with respect to high speed, low power consumption, small form factor etc. However, these demands have brought severe challenges to the semiconductor laser reliability. Therefore, a great deal of attention has been devoted to improving it and thereby ensuring reliable transmission. In this paper, a predictive maintenance framework using machine learning techniques is proposed for real-time heath monitoring and prognosis of semiconductor laser and thus enhancing its reliability. The proposed approach is composed of three stages: i) real-time performance degradation prediction, ii) degradation detection, and iii) remaining useful life (RUL) prediction. First of all, an attention based gated recurrent unit (GRU) model is adopted for real-time prediction of performance degradation. Then, a convolutional autoencoder is used to detect the degradation or abnormal behavior of a laser, given the predicted degradation performance values. Once an abnormal state is detected, a RUL prediction model based on attention-based deep learning is utilized. Afterwards, the estimated RUL is input for decision making and maintenance planning. The proposed framework is validated using experimental data derived from accelerated aging tests conducted for semiconductor tunable lasers. The proposed approach achieves a very good degradation performance prediction capability with a small root mean square error (RMSE) of 0.01, a good anomaly detection accuracy of 94.24% and a better RUL estimation capability compared to the existing ML-based laser RUL prediction models.
translated by 谷歌翻译
电力是一种波动的电源,需要短期和长期的精力计划和资源管理。更具体地说,在短期,准确的即时能源消耗中,预测极大地提高了建筑物的效率,为采用可再生能源提供了新的途径。在这方面,数据驱动的方法,即基于机器学习的方法,开始优先于更传统的方法,因为它们不仅提供了更简化的部署方式,而且还提供了最新的结果。从这个意义上讲,这项工作应用和比较了几种深度学习算法,LSTM,CNN,CNN-LSTM和TCN的性能,在制造业内的一个真实测试中。实验结果表明,TCN是预测短期即时能源消耗的最可靠方法。
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
作为自然现象的地震,历史上不断造成伤害和人类生活的损失。地震预测是任何社会计划的重要方面,可以增加公共准备,并在很大程度上减少损坏。然而,由于地震的随机特征以及实现了地震预测的有效和可靠模型的挑战,迄今为止努力一直不足,需要新的方法来解决这个问题。本文意识到​​这些问题,提出了一种基于注意机制(AM),卷积神经网络(CNN)和双向长短期存储器(BILSTM)模型的新型预测方法,其可以预测数量和最大幅度中国大陆各地区的地震为基于该地区的地震目录。该模型利用LSTM和CNN具有注意机制,以更好地关注有效的地震特性并产生更准确的预测。首先,将零阶保持技术应用于地震数据上的预处理,使得模型的输入数据更适当。其次,为了有效地使用空间信息并减少输入数据的维度,CNN用于捕获地震数据之间的空间依赖性。第三,使用Bi-LSTM层来捕获时间依赖性。第四,引入了AM层以突出其重要的特征来实现更好的预测性能。结果表明,该方法具有比其他预测方法更好的性能和概括能力。
translated by 谷歌翻译
在工业应用中,电动机的故障近一半是由于滚动元件轴承(REB)的退化引起的。因此,准确估算REB的剩余使用寿命(RUL)对于确保机械系统的可靠性和安全至关重要。为了应对这一挑战,基于模型的方法通常受到数学建模的复杂性的限制。另一方面,传统的数据驱动方法需要巨大的努力来提取降解功能并构建健康指数。在本文中,提出了一个新颖的在线数据驱动框架,以利用深度卷积神经网络(CNN)的采用来预测轴承的统治。更具体地说,训练轴承的原始振动首先是使用Hilbert-huang变换(HHT)处理的,并将新型的非线性降解指标构建为学习标签。然后使用CNN来识别提取的降解指示器和训练轴承振动之间的隐藏模式,这使得可以自动估计测试轴承的降解。最后,通过使用$ \ epsilon $ -Support向量回归模型来预测测试轴承的规定。与最先进的方法相比,提出的规则估计框架的出色性能通过实验结果证明。提出的CNN模型的一般性也通过转移到经历不同操作条件的轴承来验证。
translated by 谷歌翻译
鉴于无线频谱的有限性和对无线通信最近的技术突破产生的频谱使用不断增加的需求,干扰问题仍在继续持续存在。尽管最近解决干涉问题的进步,但干扰仍然呈现出有效使用频谱的挑战。这部分是由于Wi-Fi的无许可和管理共享乐队使用的升高,长期演进(LTE)未许可(LTE-U),LTE许可辅助访问(LAA),5G NR等机会主义频谱访问解决方案。因此,需要对干扰稳健的有效频谱使用方案的需求从未如此重要。在过去,通过使用避免技术以及非AI缓解方法(例如,自适应滤波器)来解决问题的大多数解决方案。非AI技术的关键缺陷是需要提取或开发信号特征的域专业知识,例如CycrationArity,带宽和干扰信号的调制。最近,研究人员已成功探索了AI / ML的物理(PHY)层技术,尤其是深度学习,可减少或补偿干扰信号,而不是简单地避免它。 ML基于ML的方法的潜在思想是学习来自数据的干扰或干扰特性,从而使需要对抑制干扰的域专业知识进行侧联。在本文中,我们审查了广泛的技术,这些技术已经深入了解抑制干扰。我们为干扰抑制中许多不同类型的深度学习技术提供比较和指导。此外,我们突出了在干扰抑制中成功采用深度学习的挑战和潜在的未来研究方向。
translated by 谷歌翻译