深度学习表明,针对不同领域(例如图像和语音识别)的传统机器学习方法有了重大改进。他们在基准数据集上的成功通过从业人员通过验证的模型转移到现实世界中。使用监督学习预处理的视觉模型需要大量昂贵的数据注释。为了应对这一限制,已经提出了DeepCluster(一种简单且可扩展的视觉表示预处理)。但是,该模型的基本工作尚不清楚。在本文中,我们分析了DeepCluster内部质量,并详尽地评估了各种超参数在三个不同数据集上的影响。因此,我们提出了一个解释算法在实践中起作用的原因。我们还表明,深簇收敛和性能高度取决于卷积层随机初始化过滤器的质量与所选簇数的相互作用。此外,我们证明连续聚类对于深簇收敛并不重要。因此,聚类阶段的早期停止将减少训练时间,并允许算法扩展到大型数据集。最后,我们在半监督环境中得出了合理的超参数选择标准。
translated by 谷歌翻译
Clustering is a class of unsupervised learning methods that has been extensively applied and studied in computer vision. Little work has been done to adapt it to the end-to-end training of visual features on large scale datasets. In this work, we present DeepCluster, a clustering method that jointly learns the parameters of a neural network and the cluster assignments of the resulting features. DeepCluster iteratively groups the features with a standard clustering algorithm, kmeans, and uses the subsequent assignments as supervision to update the weights of the network. We apply DeepCluster to the unsupervised training of convolutional neural networks on large datasets like ImageNet and YFCC100M. The resulting model outperforms the current state of the art by a significant margin on all the standard benchmarks.
translated by 谷歌翻译
Combining clustering and representation learning is one of the most promising approaches for unsupervised learning of deep neural networks. However, doing so naively leads to ill posed learning problems with degenerate solutions. In this paper, we propose a novel and principled learning formulation that addresses these issues. The method is obtained by maximizing the information between labels and input data indices. We show that this criterion extends standard crossentropy minimization to an optimal transport problem, which we solve efficiently for millions of input images and thousands of labels using a fast variant of the Sinkhorn-Knopp algorithm. The resulting method is able to self-label visual data so as to train highly competitive image representations without manual labels. Our method achieves state of the art representation learning performance for AlexNet and ResNet-50 on SVHN, CIFAR-10, CIFAR-100 and ImageNet and yields the first self-supervised AlexNet that outperforms the supervised Pascal VOC detection baseline. Code and models are available 1 .
translated by 谷歌翻译
我们介绍了代表学习(CARL)的一致分配,通过组合来自自我监督对比学习和深层聚类的思路来学习视觉表现的无监督学习方法。通过从聚类角度来看对比学习,Carl通过学习一组一般原型来学习无监督的表示,该原型用作能量锚来强制执行给定图像的不同视图被分配给相同的原型。与与深层聚类的对比学习的当代工作不同,Carl建议以在线方式学习一组一般原型,使用梯度下降,而无需使用非可微分算法或k手段来解决群集分配问题。卡尔在许多代表性学习基准中超越了竞争对手,包括线性评估,半监督学习和转移学习。
translated by 谷歌翻译
This work tackles the problem of semi-supervised learning of image classifiers. Our main insight is that the field of semi-supervised learning can benefit from the quickly advancing field of self-supervised visual representation learning. Unifying these two approaches, we propose the framework of self-supervised semi-supervised learning (S 4 L) and use it to derive two novel semi-supervised image classification methods. We demonstrate the effectiveness of these methods in comparison to both carefully tuned baselines, and existing semi-supervised learning methods. We then show that S 4 L and existing semi-supervised methods can be jointly trained, yielding a new state-of-the-art result on semi-supervised ILSVRC-2012 with 10% of labels.
translated by 谷歌翻译
Pre-training general-purpose visual features with convolutional neural networks without relying on annotations is a challenging and important task. Most recent efforts in unsupervised feature learning have focused on either small or highly curated datasets like ImageNet, whereas using non-curated raw datasets was found to decrease the feature quality when evaluated on a transfer task. Our goal is to bridge the performance gap between unsupervised methods trained on curated data, which are costly to obtain, and massive raw datasets that are easily available. To that effect, we propose a new unsupervised approach which leverages self-supervision and clustering to capture complementary statistics from large-scale data. We validate our approach on 96 million images from YFCC100M [42], achieving state-of-the-art results among unsupervised methods on standard benchmarks, which confirms the potential of unsupervised learning when only non-curated raw data are available. We also show that pre-training a supervised VGG-16 with our method achieves 74.9% top-1 classification accuracy on the validation set of ImageNet, which is an improvement of +0.8% over the same network trained from scratch. Our code is available at https://github. com/facebookresearch/DeeperCluster.
translated by 谷歌翻译
Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large number of explicit pairwise feature comparisons, which is computationally challenging. In this paper, we propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or "views") of the same image, instead of comparing features directly as in contrastive learning. Simply put, we use a "swapped" prediction mechanism where we predict the code of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without increasing the memory or compute requirements. We validate our findings by achieving 75.3% top-1 accuracy on ImageNet with ResNet-50, as well as surpassing supervised pretraining on all the considered transfer tasks.
translated by 谷歌翻译
近年来,随着深度神经网络方法的普及,手术计算机视觉领域经历了相当大的突破。但是,用于培训的标准全面监督方法需要大量的带注释的数据,从而实现高昂的成本;特别是在临床领域。已经开始在一般计算机视觉社区中获得吸引力的自我监督学习(SSL)方法代表了对这些注释成本的潜在解决方案,从而使仅从未标记的数据中学习有用的表示形式。尽管如此,SSL方法在更复杂和有影响力的领域(例如医学和手术)中的有效性仍然有限且未开发。在这项工作中,我们通过在手术计算机视觉的背景下研究了四种最先进的SSL方法(Moco V2,Simclr,Dino,SWAV),以解决这一关键需求。我们对这些方法在cholec80数据集上的性能进行了广泛的分析,以在手术环境理解,相位识别和工具存在检测中为两个基本和流行的任务。我们检查了它们的参数化,然后在半监督设置中相对于训练数据数量的行为。如本工作所述和进行的那样,将这些方法的正确转移到手术中,可以使SSL的一般用途获得可观的性能 - 相位识别率高达7%,而在工具存在检测方面,则具有20% - 半监督相位识别方法高达14%。该代码将在https://github.com/camma-public/selfsupsurg上提供。
translated by 谷歌翻译
在有监督的深度学习中,学习远程感应图像(RSI)的良好表示依赖于手动注释。但是,在遥感领域,很难获得大量的标记数据。最近,自欺欺人的学习显示了其出色的学习图像表示形式的能力,尤其是实例歧视的方法。比较实例歧视的方法,基于聚类的方法不仅查看与``正面样本''相同图像的转换,而且还要查看相似的图像。在本文中,我们提出了一种基于群集的代表学习方法。我们首先介绍衡量表示表示的歧视性的数量,我们从中表明,即使分布都需要最判别的表示。这提供了理论上的见解,说明为什么均匀分发图像效果很好。我们注意到,只有保留邻里关系的均匀分布是可取的因此,我们开发了一种算法,该算法将神经网络的输出转换为实现均匀分发样品的目标,同时保留了输出的邻居关系。广泛的实验表明,我们的方法可以学习比或更好的表示形式。艺术状态的方法,我们的方法执行com在各种RSI数据集上有效地稳健地推荐。
translated by 谷歌翻译
我们提出了很少的示例聚类(FEC),这是一种新型算法,可以进行对比学习以群集几个示例。我们的方法由以下三个步骤组成:(1)生成候选集群分配,(2)每个集群分配的对比度学习,以及(3)选择最佳候选者。基于以下假设:与其他人的对比学习者的训练速度要快,我们选择了在步骤(3)中学习早期学习中训练损失最小的候选人。在\ textit {mini} -imagenet和Cub-200-2011数据集上进行的广泛实验表明,在各种情况下,FEC平均比其他基本线平均优于其他基本线。FEC还表现出有趣的学习曲线,其中聚类性能逐渐增加,然后急剧下降。
translated by 谷歌翻译
常规监督学习或分类的主要假设是,测试样本是从与训练样本相同的分布中得出的,该样本称为封闭设置学习或分类。在许多实际情况下,事实并非如此,因为测试数据中有未知数或看不见的类样本,这称为“开放式”方案,需要检测到未知数。该问题称为开放式识别问题,在安全至关重要的应用中很重要。我们建议通过学习成对相似性来检测未知数(或看不见的类样本)。提出的方法分为两个步骤。它首先使用培训中出现的所见类学习了一个封闭的集体分类器,然后学习如何将看到的类与伪单人(自动生成的看不见的类样本)进行比较。伪无表情的一代是通过对可见或训练样品进行分配转换增加而进行的。我们称我们的方法OPG(基于伪看不见的数据生成开放式识别)。实验评估表明,基于相似性的功能可以成功区分基准数据集中的未见特征,以进行开放式识别。
translated by 谷歌翻译
近年来,已经开发了几种无监督和自我监督的方法,以从大规模未标记的数据集中学习视觉功能。然而,它们的主要缺点是,如果简单地旋转或相机的视角更改,这些方法几乎无法识别同一对象的视觉特征。为了克服此限制,同时利用有用的监督来源,我们考虑了视频对象轨道。遵循直觉,轨道中的两个补丁应该在学习的特征空间中具有相似的视觉表示形式,我们采用了一种无监督的基于群集的方法,并约束此类表示为同一类别,因为它们可能属于同一对象或对象零件。与先前的工作相比,不同数据集上两个下游任务的实验结果证明了我们在线深度聚类(ODCT)方法的有效性,而视频轨道一致性(ODCT)方法没有利用时间信息。此外,我们表明,与依靠昂贵和精确的轨道注释相比,利用无监督的类不知所措但嘈杂的轨道生成器的产量提高了准确性。
translated by 谷歌翻译
由于早期的机器学习模型,诸如准确性和精确度等指标已成为评估和比较训练模型的事实上的方法。但是,单个度量号并未完全捕获模型之间的相似性和差异,尤其是在计算机视觉域中。在某个数据集上具有很高精度的模型可能会在另一个数据集上提供较低的精度,而无需任何进一步的见解。为了解决这个问题,我们基于一种称为Disect的最新可解释性技术,以引入\ textit {模型可解释性},该技术根据他们所学的视觉概念(例如对象和材料)来确定模型如何相互联系或补充。为了实现这一目标,我们将13个表现最佳的自制模型投射到一个学习的概念(LCE)空间中,该概念从学识渊博的概念的角度揭示了模型之间的邻近。我们将这些模型的性能进一步跨越了四个计算机视觉任务和15个数据集。该实验使我们能够将模型分为三类,并首次揭示了不同任务所需的视觉概念类型。这是设计跨任务学习算法的一步。
translated by 谷歌翻译
自我监督的视觉表示学习最近引起了重大的研究兴趣。虽然一种评估自我监督表示的常见方法是通过转移到各种下游任务,但我们研究了衡量其可解释性的问题,即了解原始表示中编码的语义。我们将后者提出为估计表示和手动标记概念空间之间的相互信息。为了量化这一点,我们介绍了一个解码瓶颈:必须通过简单的预测变量捕获信息,将概念映射到表示空间中的簇。我们称之为反向线性探测的方法为表示表示的语义敏感。该措施还能够检测出表示何时包含概念的组合(例如“红色苹果”),而不仅仅是单个属性(独立的“红色”和“苹果”)。最后,我们建议使用监督分类器自动标记大型数据集,以丰富用于探测的概念的空间。我们使用我们的方法来评估大量的自我监督表示形式,通过解释性对它们进行排名,并通过线性探针与标准评估相比出现的差异,并讨论了一些定性的见解。代码为:{\ Scriptsize {\ url {https://github.com/iro-cp/ssl-qrp}}}}}。
translated by 谷歌翻译
Unsupervised visual representation learning remains a largely unsolved problem in computer vision research. Among a big body of recently proposed approaches for unsupervised learning of visual representations, a class of self-supervised techniques achieves superior performance on many challenging benchmarks. A large number of the pretext tasks for self-supervised learning have been studied, but other important aspects, such as the choice of convolutional neural networks (CNN), has not received equal attention. Therefore, we revisit numerous previously proposed self-supervised models, conduct a thorough large scale study and, as a result, uncover multiple crucial insights. We challenge a number of common practices in selfsupervised visual representation learning and observe that standard recipes for CNN design do not always translate to self-supervised representation learning. As part of our study, we drastically boost the performance of previously proposed techniques and outperform previously published state-of-the-art results by a large margin.
translated by 谷歌翻译
已显示自我监督学习(SSL)学习有用和信息保存的表示。神经网络(NNS)被广泛应用,但它们的重量空间仍然不完全理解。因此,我们建议使用SSL来学习NNS群体重量的神经表示。为此,我们介绍域特定的数据增强和适应的关注架构。我们的实证评估表明,该领域的自我监督的代表学习能够恢复不同的NN模型特征。此外,我们表明所提出的学习表示始终是预测超参数,测试准确性和泛化差距以及转移到分发外设置的工作。
translated by 谷歌翻译
We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains.The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages.We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.
translated by 谷歌翻译
我们在过去十年中目睹了监督学习范式的大规模增长。监督学习需要大量标记的数据来达到最先进的性能。但是,标记样本需要很多人的注释。为避免标签数据的成本,提出了自我监督的方法来利用大部分可用的未标记数据。本研究对特征表示的自我监督范式的最新发展进行了全面和富有洞察力的调查和分析。在本文中,我们调查了影响不同环境下自我监督有用性的因素。我们展示了一些关于自我监督,生成和对比方法的两种不同方法的关键见解。我们还调查了监督对抗培训的局限性以及自我监督如何帮助克服这些限制。然后,我们继续讨论有效利用自我监督对视觉任务的局限性和挑战。最后,我们突出了一些打开的问题,并指出了未来的研究方向。
translated by 谷歌翻译
最近,自我监督的表示学习(SSRL)在计算机视觉,语音,自然语言处理(NLP)以及最近的其他类型的模式(包括传感器的时间序列)中引起了很多关注。自我监督学习的普及是由传统模型通常需要大量通知数据进行培训的事实所驱动的。获取带注释的数据可能是一个困难且昂贵的过程。已经引入了自我监督的方法,以通过使用从原始数据自由获得的监督信号对模型进行判别预训练来提高训练数据的效率。与现有的对SSRL的评论不同,该评论旨在以单一模式为重点介绍CV或NLP领域的方法,我们旨在为时间数据提供对多模式自我监督学习方法的首次全面审查。为此,我们1)提供现有SSRL方法的全面分类,2)通过定义SSRL框架的关键组件来引入通用管道,3)根据其目标功能,网络架构和潜在应用程序,潜在的应用程序,潜在的应用程序,比较现有模型, 4)查看每个类别和各种方式中的现有多模式技术。最后,我们提出了现有的弱点和未来的机会。我们认为,我们的工作对使用多模式和/或时间数据的域中SSRL的要求有了一个观点
translated by 谷歌翻译
我们研究了用于半监控学习(SSL)的无监督数据选择,其中可以提供大规模的未标记数据集,并且为标签采集预算小额数据子集。现有的SSL方法专注于学习一个有效地集成了来自给定小标记数据和大型未标记数据的信息的模型,而我们专注于选择正确的数据以用于SSL的注释,而无需任何标签或任务信息。直观地,要标记的实例应统称为下游任务的最大多样性和覆盖范围,并且单独具有用于SSL的最大信息传播实用程序。我们以三步数据为中心的SSL方法形式化这些概念,使稳定性和精度的纤维液改善8%的CiFar-10(标记为0.08%)和14%的Imagenet -1k(标记为0.2%)。它也是一种具有各种SSL方法的通用框架,提供一致的性能增益。我们的工作表明,在仔细选择注释数据上花费的小计算带来了大注释效率和模型性能增益,而无需改变学习管道。我们完全无监督的数据选择可以轻松扩展到其他弱监督的学习设置。
translated by 谷歌翻译