文本对抗攻击暴露了文本分类器的漏洞,可用于改善其稳健性。现有的上下文感知方法仅考虑黄金标签的概率,并在搜索攻击路径时使用贪婪的搜索,通常会限制攻击效率。为了解决这些问题,我们提出了PDB,这是一种使用概率差的引导光束搜索的上下文感知的文本对抗攻击模型。概率差异是所有类标签概率的总体考虑,PDB使用它来指导攻击路径的选择。此外,PDBS使用Beam搜索找到成功的攻击路径,从而避免搜索空间有限。广泛的实验和人类评估表明,PDB在一系列评估指标中的表现优于以前的最佳模型,尤其是提高 +19.5%的攻击成功率。消融研究和定性分析进一步证实了PDB的效率。
translated by 谷歌翻译
Machine learning algorithms are often vulnerable to adversarial examples that have imperceptible alterations from the original counterparts but can fool the state-of-the-art models. It is helpful to evaluate or even improve the robustness of these models by exposing the maliciously crafted adversarial examples. In this paper, we present TEXTFOOLER, a simple but strong baseline to generate adversarial text. By applying it to two fundamental natural language tasks, text classification and textual entailment, we successfully attacked three target models, including the powerful pre-trained BERT, and the widely used convolutional and recurrent neural networks. We demonstrate three advantages of this framework:(1) effective-it outperforms previous attacks by success rate and perturbation rate, (2) utility-preserving-it preserves semantic content, grammaticality, and correct types classified by humans, and (3) efficient-it generates adversarial text with computational complexity linear to the text length. 1
translated by 谷歌翻译
Robustness evaluation against adversarial examples has become increasingly important to unveil the trustworthiness of the prevailing deep models in natural language processing (NLP). However, in contrast to the computer vision domain where the first-order projected gradient descent (PGD) is used as the benchmark approach to generate adversarial examples for robustness evaluation, there lacks a principled first-order gradient-based robustness evaluation framework in NLP. The emerging optimization challenges lie in 1) the discrete nature of textual inputs together with the strong coupling between the perturbation location and the actual content, and 2) the additional constraint that the perturbed text should be fluent and achieve a low perplexity under a language model. These challenges make the development of PGD-like NLP attacks difficult. To bridge the gap, we propose TextGrad, a new attack generator using gradient-driven optimization, supporting high-accuracy and high-quality assessment of adversarial robustness in NLP. Specifically, we address the aforementioned challenges in a unified optimization framework. And we develop an effective convex relaxation method to co-optimize the continuously-relaxed site selection and perturbation variables and leverage an effective sampling method to establish an accurate mapping from the continuous optimization variables to the discrete textual perturbations. Moreover, as a first-order attack generation method, TextGrad can be baked into adversarial training to further improve the robustness of NLP models. Extensive experiments are provided to demonstrate the effectiveness of TextGrad not only in attack generation for robustness evaluation but also in adversarial defense.
translated by 谷歌翻译
尽管在许多机器学习任务方面取得了巨大成功,但深度神经网络仍然易于对抗对抗样本。虽然基于梯度的对抗攻击方法在计算机视野领域探索,但由于文本的离散性质,直接应用于自然语言处理中,这是不切实际的。为了弥合这一差距,我们提出了一般框架,以适应现有的基于梯度的方法来制作文本对抗性样本。在该框架中,将基于梯度的连续扰动添加到嵌入层中,并在前向传播过程中被放大。然后用掩模语言模型头解码最终的扰动潜在表示以获得潜在的对抗性样本。在本文中,我们将我们的框架与\ textbf {t} Extual \ TextBF {P} ROJECTED \ TextBF {G} Radient \ TextBF {D} excent(\ TextBF {TPGD})进行ronject \ textbf {p}。我们通过在三个基准数据集上执行转移黑匣子攻击来评估我们的框架来评估我们的框架。实验结果表明,与强基线方法相比,我们的方法达到了更好的性能,并产生更精细和语法的对抗性样本。所有代码和数据都将公开。
translated by 谷歌翻译
过去几年的对抗性文本攻击领域已经大大增长,其中常见的目标是加工可以成功欺骗目标模型的对抗性示例。然而,攻击的难以察觉,也是基本目标,通常被以前的研究遗漏。在这项工作中,我们倡导同时考虑两个目标,并提出一种新的多优化方法(被称为水合物转速),具有可提供的绩效保证,以实现高稳定性的成功攻击。我们通过基于分数和决策的设置,展示了HydroText通过广泛实验的效果,涉及五个基于基准数据集的现代NLP模型。与现有的最先进的攻击相比,Hydratext同时实现了更高的成功率,更低的修改率和与原始文本更高的语义相似性。人类评估研究表明,由水分精制成的对抗例保持良好的有效性和自然。最后,这些例子也表现出良好的可转移性,并且可以通过对抗性培训为目标模型带来显着的稳健性。
translated by 谷歌翻译
后门攻击对NLP模型构成了新的威胁。在后门攻击中构建中毒数据的标准策略是将触发器(例如,稀有字)插入所选句子,并将原始标签更改为目标标签。该策略具有从触发器和标签视角轻松检测到的严重缺陷:注入的触发器,通常是一种罕见的单词,导致异常的自然语言表达,因此可以通过防御模型容易地检测到异常的自然语言表达;改变的目标标签会导致误报标记的示例,因此可以通过手动检查容易地检测到。要处理此问题,请在本文中,我们提出了一种新的策略来执行不需要外部触发的文本后门攻击,并且中毒样品被正确标记。拟议策略的核心思想是构建清洁标记的例子,其标签是正确的,但可以导致测试标签在与培训集合融合时的变化。为了产生中毒清洁标记的例子,我们提出了一种基于遗传算法的句子生成模型,以满足文本数据的不可微差特性。广泛的实验表明,拟议的攻击策略不仅有效,而且更重要的是,由于其令人触发和清洁的性质,难以防御。我们的工作标志着在NLP中开发令人触发的攻击策略的第一步。
translated by 谷歌翻译
随着预训练的语言模型(PLM)的继续增长,精细调整PLM的硬件和数据要求也会增长。因此,研究人员提出了一种称为\ textit {提示学习}的较轻方法。但是,在调查过程中,我们观察到及时的学习方法是脆弱的,很容易被一些非法构造的提示攻击,从而导致分类错误和PLM的严重安全问题。当前的大多数研究都忽略了基于及时方法的安全问题。因此,在本文中,我们提出了一种恶意提示模板构建方法(\ textbf {stressAttack})来探测PLM的安全性能。研究了几种不友好的模板构建方法,以指导模型错误分类任务。在三个数据集和三个PLM上进行了广泛的实验证明了我们提出的方法提示的有效性。我们还进行实验,以验证我们的方法是否适用于几种镜头。
translated by 谷歌翻译
Pre-trained programming language (PL) models (such as CodeT5, CodeBERT, GraphCodeBERT, etc.,) have the potential to automate software engineering tasks involving code understanding and code generation. However, these models operate in the natural channel of code, i.e., they are primarily concerned with the human understanding of the code. They are not robust to changes in the input and thus, are potentially susceptible to adversarial attacks in the natural channel. We propose, CodeAttack, a simple yet effective black-box attack model that uses code structure to generate effective, efficient, and imperceptible adversarial code samples and demonstrates the vulnerabilities of the state-of-the-art PL models to code-specific adversarial attacks. We evaluate the transferability of CodeAttack on several code-code (translation and repair) and code-NL (summarization) tasks across different programming languages. CodeAttack outperforms state-of-the-art adversarial NLP attack models to achieve the best overall drop in performance while being more efficient, imperceptible, consistent, and fluent. The code can be found at https://github.com/reddy-lab-code-research/CodeAttack.
translated by 谷歌翻译
最近的研究表明,预训练的语言模型(LMS)容易受到文本对抗性攻击的影响。但是,现有的攻击方法要么遭受低攻击成功率,要么无法在指数级的扰动空间中有效搜索。我们提出了一个有效有效的框架Semattack,以通过构建不同的语义扰动函数来生成自然的对抗文本。特别是,Semattack优化了对通用语义空间约束的生成的扰动,包括错字空间,知识空间(例如WordNet),上下文化的语义空间(例如,BERT群集的嵌入空间)或这些空间的组合。因此,生成的对抗文本在语义上更接近原始输入。广泛的实验表明,最新的(SOTA)大规模LMS(例如Deberta-V2)和国防策略(例如Freelb)仍然容易受到Semattack的影响。我们进一步证明,Semattack是一般的,并且能够为具有较高攻击成功率的不同语言(例如英语和中文)生成自然的对抗文本。人类评估还证实,我们产生的对抗文本是自然的,几乎不会影响人类的表现。我们的代码可在https://github.com/ai-secure/semattack上公开获取。
translated by 谷歌翻译
神经文本排名模型已经见证了显着的进步,并越来越多地在实践中部署。不幸的是,它们还继承了一般神经模型的对抗性脆弱性,这些神经模型已被检测到,但仍未被先前的研究所忽视。此外,Blackhat SEO可能会利用继承的对抗性漏洞来击败受保护的搜索引擎。在这项研究中,我们提出了对黑盒神经通道排名模型的模仿对抗攻击。我们首先表明,可以通过列举关键查询/候选者,然后训练排名模仿模型来透明和模仿目标段落排名模型。利用排名模仿模型,我们可以精心操纵排名结果并将操纵攻击转移到目标排名模型。为此,我们提出了一种由成对目标函数授权的基于创新的基于梯度的攻击方法,以产生对抗性触发器,该触发器会导致有预谋的混乱,而具有很少的令牌。为了配备触发器的伪装,我们将下一个句子预测损失和语言模型流利度限制添加到目标函数中。对通过排名的实验结果证明了对各种SOTA神经排名模型的排名模仿攻击模型和对抗触发器的有效性。此外,各种缓解分析和人类评估表明,在面对潜在的缓解方法时,伪装的有效性。为了激励其他学者进一步研究这一新颖和重要的问题,我们将实验数据和代码公开可用。
translated by 谷歌翻译
深度变压器神经网络模型在生物医学域中提高了智能文本处理系统的预测精度。他们在各种各样的生物医学和临床自然语言处理(NLP)基准上获得了最先进的性能分数。然而,到目前为止,这些模型的稳健性和可靠性较小。神经NLP模型可以很容易地被对抗动物样本所欺骗,即输入的次要变化,以保留文本的含义和可理解性,而是强制NLP系统做出错误的决策。这提出了对生物医学NLP系统的安全和信任的严重担忧,特别是当他们旨在部署在现实世界用例中时。我们调查了多种变压器神经语言模型的强大,即Biobert,Scibert,Biomed-Roberta和Bio-Clinicalbert,在各种生物医学和临床文本处理任务中。我们实施了各种对抗的攻击方法来测试不同攻击方案中的NLP系统。实验结果表明,生物医学NLP模型对对抗性样品敏感;它们的性能平均分别平均下降21%和18.9个字符级和字级对抗噪声的绝对百分比。进行广泛的对抗训练实验,我们在清洁样品和对抗性投入的混合物上进行了微调NLP模型。结果表明,对抗性训练是对抗对抗噪声的有效防御机制;模型的稳健性平均提高11.3绝对百分比。此外,清洁数据的模型性能平均增加2.4个绝对存在,表明对抗性训练可以提高生物医学NLP系统的概括能力。
translated by 谷歌翻译
Recent works on Lottery Ticket Hypothesis have shown that pre-trained language models (PLMs) contain smaller matching subnetworks(winning tickets) which are capable of reaching accuracy comparable to the original models. However, these tickets are proved to be notrobust to adversarial examples, and even worse than their PLM counterparts. To address this problem, we propose a novel method based on learning binary weight masks to identify robust tickets hidden in the original PLMs. Since the loss is not differentiable for the binary mask, we assign the hard concrete distribution to the masks and encourage their sparsity using a smoothing approximation of L0 regularization.Furthermore, we design an adversarial loss objective to guide the search for robust tickets and ensure that the tickets perform well bothin accuracy and robustness. Experimental results show the significant improvement of the proposed method over previous work on adversarial robustness evaluation.
translated by 谷歌翻译
Adversarial attacks in NLP challenge the way we look at language models. The goal of this kind of adversarial attack is to modify the input text to fool a classifier while maintaining the original meaning of the text. Although most existing adversarial attacks claim to fulfill the constraint of semantics preservation, careful scrutiny shows otherwise. We show that the problem lies in the text encoders used to determine the similarity of adversarial examples, specifically in the way they are trained. Unsupervised training methods make these encoders more susceptible to problems with antonym recognition. To overcome this, we introduce a simple, fully supervised sentence embedding technique called Semantics-Preserving-Encoder (SPE). The results show that our solution minimizes the variation in the meaning of the adversarial examples generated. It also significantly improves the overall quality of adversarial examples, as confirmed by human evaluators. Furthermore, it can be used as a component in any existing attack to speed up its execution while maintaining similar attack success.
translated by 谷歌翻译
我们提出了两种小型无监督方法,用于消除文本中的毒性。我们的第一个方法结合了最近的两个想法:(1)使用小型条件语言模型的生成过程的指导和(2)使用释义模型进行风格传输。我们使用良好的令人措辞的令人愉快的释放器,由风格培训的语言模型引导,以保持文本内容并消除毒性。我们的第二种方法使用BERT用他们的非攻击性同义词取代毒性单词。我们通过使BERT替换具有可变数量的单词的屏蔽令牌来使该方法更灵活。最后,我们介绍了毒性去除任务的风格转移模型的第一个大规模比较研究。我们将模型与许多用于样式传输的方法进行比较。使用无监督的样式传输指标的组合以可参考方式评估该模型。两种方法都建议产生新的SOTA结果。
translated by 谷歌翻译
离散对手攻击是对保留输出标签的语言输入的象征性扰动,但导致预测误差。虽然这种攻击已经广泛探索了评估模型稳健性的目的,但他们的改善稳健性的效用仅限于离线增强。具体地,给定训练有素的模型,攻击用于产生扰动(对抗性)示例,并且模型重新培训一次。在这项工作中,我们解决了这个差距并利用了在线增强的离散攻击,在每个训练步骤中产生了对抗的例子,适应模型的变化性质。我们提出(i)基于最佳搜索的新的离散攻击,以及(ii)与现有工作不同的随机采样攻击不是基于昂贵的搜索过程。令人惊讶的是,我们发现随机抽样导致鲁棒性的令人印象深刻,优于普通使用的离线增强,同时导致训练时间〜10x的加速。此外,在线增强基于搜索的攻击证明了更高的培训成本,显着提高了三个数据集的鲁棒性。最后,我们表明我们的新攻击与先前的方法相比,我们的新攻击显着提高了鲁棒性。
translated by 谷歌翻译
在过去几年中,已经提出了各种文字攻击方法来揭示自然语言处理中使用的深度神经网络的脆弱性。通常,这些方法涉及一个重要的优化步骤,以确定原始输入中的每个单词使用的替代。然而,从对问题理解和解决问题的角度来看,对这一步骤的目前的研究仍然是有限的。在本文中,我们通过揭示问题的理论属性并提出有效的本地搜索算法(LS)来解决这些问题来解决这些问题。我们建立了一个关于解决问题的第一个可提供的近似保证。涉及5个NLP任务,8个数据集和26个NLP模型的扩展实验表明,LS可能大大降低了Qualies数量,以实现高攻击成功率。进一步的实验表明,LS制造的对抗例通常具有更高的质量,表现出更好的可转移性,并且可以通过对抗培训为受害者模型带来更高的鲁棒性改善。
translated by 谷歌翻译
最近的作品表明了解释性和鲁棒性是值得信赖和可靠的文本分类的两个关键成分。然而,以前的作品通常是解决了两个方面的一个:i)如何提取准确的理由,以便在有利于预测的同时解释; ii)如何使预测模型对不同类型的对抗性攻击稳健。直观地,一种产生有用的解释的模型应该对对抗性攻击更加强大,因为我们无法信任输出解释的模型,而是在小扰动下改变其预测。为此,我们提出了一个名为-BMC的联合分类和理由提取模型。它包括两个关键机制:混合的对手训练(AT)旨在在离散和嵌入空间中使用各种扰动,以改善模型的鲁棒性,边界匹配约束(BMC)有助于利用边界信息的引导来定位理由。基准数据集的性能表明,所提出的AT-BMC优于分类和基本原子的基础,由大边距提取。鲁棒性分析表明,建议的AT-BMC将攻击成功率降低了高达69%。经验结果表明,强大的模型与更好的解释之间存在连接。
translated by 谷歌翻译
大型语言模型开发的最新进展导致公众访问最先进的预训练的语言模型(PLM),包括生成培训的预训练的变压器3(GPT-3)(GPT-3)和Transformers(来自Transformers)的双向编码器(伯特)。但是,实际上,对PLM的评估表明,在培训和开发的微调阶段,它们对对抗性攻击的敏感性。这种攻击可能导致错误的输出,模型生成的仇恨言论以及用户敏感信息的暴露。尽管现有的研究集中在PLM的培训或微调期间的对抗攻击上,但有关这两个发展阶段之间攻击的信息不足。在这项工作中,我们重点介绍了GPT-3公开发行的主要安全漏洞,并进一步研究了其他最先进的PLM中的这种漏洞。我们将工作限制在没有经过微调的预培训模型中。此外,我们强调了令牌距离最小化的扰动作为一种有效的对抗方法,绕过受监督和无监督的质量措施。遵循这种方法,在评估语义相似性时,我们观察到文本分类质量的显着降低。
translated by 谷歌翻译
Recently it has been shown that state-of-the-art NLP models are vulnerable to adversarial attacks, where the predictions of a model can be drastically altered by slight modifications to the input (such as synonym substitutions). While several defense techniques have been proposed, and adapted, to the discrete nature of text adversarial attacks, the benefits of general-purpose regularization methods such as label smoothing for language models, have not been studied. In this paper, we study the adversarial robustness provided by various label smoothing strategies in foundational models for diverse NLP tasks in both in-domain and out-of-domain settings. Our experiments show that label smoothing significantly improves adversarial robustness in pre-trained models like BERT, against various popular attacks. We also analyze the relationship between prediction confidence and robustness, showing that label smoothing reduces over-confident errors on adversarial examples.
translated by 谷歌翻译
发现普遍的对抗性扰动的存在对对抗性学习领域具有很大的理论和实际影响。在文本域中,大多数通用研究都集中在添加到所有文本中的对抗前缀上。但是,与视觉域不同,在不同输入中添加相同的扰动会导致明显不自然的输入。因此,我们介绍了一种新的通用对手设置 - 一种通用的对抗性政策,它具有其他普遍攻击的许多优势,但也导致有效文本 - 从而使其在实践中具有重要意义。我们通过在许多文本上学习保存文本更改的一组语义集,学习单个搜索策略来实现这一目标。这种公式是普遍的,因为该政策成功地在新文本上找到了对抗性示例。我们的方法使用文本扰动,这些扰动已被广泛显示,以在非普遍设置(特定的同义词替代品)中产生自然攻击。我们建议对使用强化学习的这种表述进行强有力的基线方法。它可以概括(从几乎没有500个培训文本)表明文本域中也存在普遍的对抗模式。
translated by 谷歌翻译