时空人群流量预测(STCFP)问题是一种经典问题,具有丰富的现有研究工作,这些努力受益于传统的统计学习和最近的深度学习方法。虽然STCFP可以参考许多现实世界问题,但大多数现有研究都侧重于相当特定的应用,例如预测出租车需求,乘资顺序等。这会阻碍STCFP研究作为针对不同应用的方法几乎没有比较,因此如何将应用驱动的方法概括为其他场景尚不清楚。要填补这一差距,这篇论文进行了两项努力:(i)我们提出了一个叫做STANALYTIC的分析框架,以定性地调查其关于各种空间和时间因素的设计考虑的STCFP方法,旨在使不同的应用驱动的方法进行不同的方法; (ii)(ii)我们构建一个广泛的大型STCFP基准数据集,具有四种不同的场景(包括RideSharing,Bikesharing,Metro和电动车辆充电),其流量高达数亿个流量记录,以定量测量STCFP方法的普遍性。此外,为了详细说明STANalytic在帮助设计上推广的STCFP方法方面的有效性,我们提出了一种通过整合STANALYTIC鉴定的可推广的时间和空间知识来提出一种称为STETA的时空元模型。我们利用不同的深度学习技术实施STMETA的三种变体。通过数据集,我们证明Stmeta变体可以优于最先进的STCFP方法5%。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
在清晨预测交通动态时,传统交通预测方法的有效性通常非常有限。原因是在清晨通勤期间交通可能会彻底分解,这个分解的时间和持续时间大幅度从日常生活中变化。清晨的交通预测是通知午餐的交通管理至关重要,但他们通常会提前预测,特别是在午夜预测。在本文中,我们建议将Twitter消息作为探测方法,了解在前一天晚上/午夜的人们工作和休息模式的影响到下一天的早晨交通。该模型在匹兹堡的高速公路网络上进行了测试,作为实验。由此产生的关系令人惊讶地简单且强大。我们发现,一般来说,早些时候的人休息如推文所示,即第二天早上就越拥挤的道路就越多。之前的大事发生了大事,由更高或更低的Tweet情绪表示,比正常,通常意味着在第二天早上的旅行需求较低。此外,人们在前一天晚上和清晨的鸣叫活动与早晨高峰时段的拥堵有统计学相关。我们利用这种关系来构建一个预测框架,预测早晨的通勤充血使用5时或早晨午夜提取的人的推特型材。匹兹堡研究支持我们的框架可以精确预测早晨拥塞,特别是对于具有大型日常充血变异的道路瓶颈上游的一些道路段。我们的方法在没有Twitter消息功能的情况下大大差异,可以从提供管理洞察力的推文配置文件中学习有意义的需求表示。
translated by 谷歌翻译
交通预测模型依赖需要感测,处理和存储的数据。这需要部署和维护交通传感基础设施,往往导致不适合的货币成本。缺乏感测的位置可以与合成数据模拟相辅相成,进一步降低交通监测所需的经济投资。根据类似道路的数据分布,其中最常见的数据生成方法之一包括产生实际的流量模式。检测具有相似流量的道路的过程是这些系统的关键点。但是,在不收集目标位置收集数据,没有用于该相似性的搜索可以使用流量度量。我们提出了一种通过检查道路段的拓扑特征来发现具有可用流量数据的方法的方法。相关的拓扑功能被提取为数值表示(嵌入式)以比较不同的位置,并最终根据其嵌入之间的相似性找到最相似的道路。检查该新颖选择系统的性能,并与更简单的流量估计方法进行比较。找到类似的数据源后,使用生成方法来合成流量配置文件。根据感知道路的交通行为的相似性,可以使用一条路的数据来馈送生成方法。在合成样品的精度方面分析了几种代理方法。最重要的是,这项工作打算促进进一步的研究努力提高综合交通样本的质量,从而降低对传感基础设施的需求。
translated by 谷歌翻译
规划自行车共享站的布局是一个复杂的过程,特别是在刚刚实施自行车共享系统的城市。城市规划者通常必须根据公开可用的数据并私下提供来自管理的数据,然后使用现场流行的位置分配模型。较小城市的许多城市可能难以招聘专家进行此类规划。本文提出了一种新的解决方案来简化和促进通过使用空间嵌入方法来实现这种规划的过程。仅基于来自OpenStreetMap的公开数据,以及来自欧洲34个城市的站布局,已经开发了一种使用优步H3离散全球电网系统将城市分成微区域的方法,并指示其值得放置站的区域在不同城市使用转移学习的现有系统。工作的结果是在规划驻地布局的决策中支持规划者的机制,以选择参考城市。
translated by 谷歌翻译
空间数据在应对与城市相关的任务中的作用近年来一直在增长。要在机器学习模型中使用它们,通常需要将它们转换为向量表示,这导致了空间数据表示学习领域的开发。还有一种越来越多的各种空间数据类型,提出了一种表示学习方法。迄今为止,公共交通时间表迄今未被用于一个城市地区的学习陈述的任务。在这项工作中,开发了一种方法来将公共交通可用性信息嵌入到矢量空间中。要对其申请进行实验,从48个城市收集公共交通时间表。使用H3空间索引方法,它们被分成微区域。还提出了一种方法来识别具有类似公共交通报价特征的地区。在其基础上,定义了该地区的公共交通报价的多层次类型。本文表明,所提出的表示方法可以识别城市之间具有相似公共交通特性的微区域,并且可用于评估城市中可用的公共交通的质量。
translated by 谷歌翻译
为了减少乘客等候时间和驾驶员搜索摩擦,骑行公司需要准确地预测时空需求和供需差距。然而,由于乘坐乘车系统中的需求和供需差距有关的时空依赖性,对需求和供需差距的准确预测是一项艰巨的任务。此外,由于机密性和隐私问题,乘车通过删除区域的空间邻接信息,有时会向研究人员发布,这阻碍了时空依赖的检测。为此,本文提出了一种新颖的时空深度学习架构,用于预测具有匿名空间邻接信息的乘车 - HaIning系统中的需求和供需差距,其与时空深度学习架构集成了特征重要性层含有一维卷积神经网络(CNN)和区域分布独立的复发性神经网络(INDRNN)。开发的架构与DIDI Chuxing的真实世界数据集进行了测试,这表明我们的模型基于所提出的体系结构可以优于传统的时间序列模型(例如,Arima)和机器学习模型(例如,梯度升压机,分布式随机林,广义线性模型,人工神经网络)。另外,该特征重要层通过揭示预测中使用的输入特征的贡献提供了模型的解释。
translated by 谷歌翻译
我们研究了具有动态,可能的周期性的流量的预测问题和区域之间的关节空间依赖关系。鉴于从时隙0到T-1的城市中区的聚合流入和流出流量,我们预测了任何区域的时间t的流量。该地区的现有技术通常以脱钩的方式考虑空间和时间依赖性,或者在具有大量超参数曲调的训练中是相当的计算密集。我们提出了ST-TIS,一种新颖,轻巧和准确的空间变压器,具有信息融合和区域采样进行交通预测。 ST-TIS将规范变压器与信息融合和区域采样延伸。信息融合模块捕获区域之间的复杂空间依赖关系。该区域采样模块是提高效率和预测精度,将计算复杂性切割为依赖性学习从$ O(n ^ 2)$到$ O(n \ sqrt {n})$,其中n是区域的数量。比最先进的模型的参数较少,我们模型的离线培训在调整和计算方面明显更快(培训时间和网络参数减少高达90±90 \%)。尽管存在这种培训效率,但大量实验表明,ST-TIS在网上预测中大幅度更准确,而不是最先进的方法(平均改善高达11 \%$ 11 \%$ ON MAPE上的$ 14 \%$ 14 \%$ 14 \%$ ON MAPE) 。
translated by 谷歌翻译
动态需求预测对于城市交通系统有效运行和管理至关重要。在单模需求预测上进行了广泛的研究,忽略了不同运输模式的需求可以彼此相关。尽管最近的一些努力,现有的多式化需求预测方法通常不够灵活,以便在不同模式下具有不同的空间单元和异质时空相关性的多路复用网络。为了解决这些问题,本研究提出了一种多重峰需求预测的多关系时空图神经网络(ST-MRGNN)。具体地,跨模式的空间依赖性被多个内部和模态关系图编码。引入多关系图神经网络(MRGNN)以捕获跨模式异构空间依赖性,包括广义图卷积网络,以了解关系图中的消息传递机制和基于关注的聚合模块,以总结不同的关系。我们进一步将MRGNN与时间门控卷积层相结合,共同模拟异质时滞的相关性。广泛的实验是使用真实的地铁和来自纽约市的乘车数据集进行的实验,结果验证了我们提出的方法对模式的现有方法的提高性能。需求稀疏位置的改进特别大。进一步分析ST-MRGNN的注意机制还表明了对理解跨模式相互作用的良好解释性。
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译
共享的电子移动服务已被广泛测试和在全球城市中驾驶,并且已经编织成现代城市规划的结构。本文研究了这些系统中的实用而重要的问题:如何在空间和时间跨空间和时间部署和管理其基础架构,以便在可持续的盈利能力的同时对用户无处不在。然而,在现实世界的系统中,评估不同部署策略的性能,然后找到最佳计划是非常昂贵的,因为它通常是不可行的,可以对试用和错误进行许多迭代。我们通过设计高保真仿真环境来解决这一目标,该环境摘要在细粒度下共享电子移动系统的关键操作细节,并使用从现实世界中收集的数据进行校准。这使我们能够尝试任意部署计划来学习在实际在实际系统中实施任何内容之前的特定上下文。特别是,我们提出了一种新的多代理神经检索方法,其中我们设计了一个分层控制器以产生暂定部署计划。然后使用多模拟范例,即并行评估的生成的部署计划进行测试,其中结果用于用深增强学习训练控制器。通过这种闭环,控制器可以被引导以在将来的迭代中产生更好的部署计划的概率。在我们的仿真环境中,已经广泛评估了所提出的方法,实验结果表明它优于基于基于基于基于的基于基于基于的启发式的服务覆盖范围和净收入的方法。
translated by 谷歌翻译
检测,预测和减轻交通拥堵是针对改善运输网络的服务水平的目标。随着对更高分辨率的更大数据集的访问,深度学习对这种任务的相关性正在增加。近年来几篇综合调查论文总结了运输领域的深度学习应用。然而,运输网络的系统动态在非拥挤状态和拥塞状态之间变化大大变化 - 从而需要清楚地了解对拥堵预测特异性特异性的挑战。在这项调查中,我们在与检测,预测和缓解拥堵相关的任务中,介绍了深度学习应用的当前状态。重复和非经常性充血是单独讨论的。我们的调查导致我们揭示了当前研究状态的固有挑战和差距。最后,我们向未来的研究方向提出了一些建议,因为所确定的挑战的答案。
translated by 谷歌翻译
准确预测短期OD矩阵(即,从各种来源到目的地的乘客流量的分布)是地铁系统中的一个重要任务。由于许多影响因素的不断变化的性质和实时延迟数据收集问题,这是强大的挑战性。最近,已经提出了一些基于学习的基于学习的模型,以便在乘车和高速公路中进行OD矩阵预测。然而,由于其不同的先验知识和上下文设置,这些模型不能充分捕获地铁网络中的站点之间的复杂时空相关性。在本文中,我们提出了一个混合框架多视图Trgru来解决OD Metro Matrix预测。特别是,它使用三个模块来模拟三个流动变化模式:最近的趋势,日常趋势,每周趋势。在每个模块中,基于每个站的嵌入的多视图表示被构造并馈送到基于变压器的门控复发结构,以通过全球自我注意机制捕获不同站的OD流的动态空间依赖性。在三种大型现实世界地铁数据集上进行了广泛的实验,证明了我们的多视图Trgru在其他竞争对手的优越性。
translated by 谷歌翻译
如今,世界各地的城市推出了电动公共汽车以优化城市交通,减少当地碳排放量。为了减少碳排放并最大化电动公共汽车的效用,重要的是为它们选择合适的路线很重要。传统上,路线选择是在专用调查的基础上,这在时间和劳动力成本高昂。在本文中,我们主要关注智能规划电动公交线路,具体取决于整个城市各地区的独特需求。我们提出了一种铺张山庄,一个路线规划系统,利用深度神经网络和多层的感知者,以预测未来人民的旅行和整个城市的未来运输碳排放。鉴于人们旅行和运输碳排放的未来信息,我们利用了一种贪婪的机制来推荐将以理想状态离开的电动公交车的公交线路。此外,从异构城市数据集中提取两个神经网络的代表特征。我们通过对珠海省珠海真实世界资源的大量实验来评估我们的方法。结果表明,我们设计的基于神经网络的算法始终如一地优于典型的基线。此外,电动公交车的建议路线有助于降低碳排放的峰值,并充分利用城市的电动公共汽车。
translated by 谷歌翻译
货运运营商依靠战术规划,以以成本效益的方式设计他们的服务网络以满足需求。对于计算途径,确定性和循环服务网络设计(SND)配方用于解决大规模问题。中央投入是定期需求,即预期在规划地平线的每个时期中重复的需求。在实践中,通过时间序列预测模型预测需求,周期性需求是这些预测的平均值。然而,这只是许多可能的映射中的一个。在文献中忽略了选择该映射的问题。我们建议使用下游决策问题的结构来选择一个良好的映射。为此目的,我们介绍了一种多级数学编程制定,明确地将时间序列预测的时间序列联系起来对此感兴趣的SND问题。解决方案是定期要求估计,以最大限度地减少战术规划地平线的成本。我们报告了对加拿大国家铁路公司大规模申请的广泛实证研究。他们清楚地表明了定期需求估算问题的重要性。实际上,规划成本对不同的定期需求估计和不同于平均预测的估计产生了重要的变化,可能导致成本较低。此外,基于预测的定期需求估计相关的成本与使用实际需求的平均值获得的比较或甚至更好。
translated by 谷歌翻译
发现新的超链接使Web爬网程序能够找到尚未索引的新页面。这对于集中的爬行者来说尤为重要,因为他们努力提供对网络的特定部分的全面分析,从而优先考虑发现内容的变化的新页面。在文献中,通常同​​时考虑超链接和内容的变化。但是,还有证据表明这两种改变不一定是相关的。此外,关于预测变化的许多研究假设页面的长期可用,这在实践中是无法实现的。这项工作的目的是提供一种方法来使用短历史有效地检测新的链接。为此,我们使用一周的间隔使用十个爬网的数据集。我们的研究包括三个部分。首先,我们通过分析新的倒出数量的经验属性来获得数据的洞察力。我们观察到这些属性平均随着时间的推移稳定,但在目标页面内外页面的超链接出现的超链接之间存在很大的差异(分别分别是内部和外部倒降)。接下来,我们为三个目标提供统计模型:链路变化率,新链接的存在以及新链接的数量。这些模型包括文献中早些时候使用的功能,以及在这项工作中引入的新功能。我们分析了特征之间的相关性,并调查了他们的信息。一个值得注意的发现是,如果目标页面的历史不可用,那么我们的新功能,代表相关页面的历史,对于目标页面中的新链接最预测。最后,我们将排名方法作为聚焦爬虫的准则,以有效地发现新页面,这对相应的目标实现了出色的性能。
translated by 谷歌翻译
最近实现了更准确的短期预测的数据驱动的空气质量预测。尽管取得了成功,但大多数目前的数据驱动解决方案都缺乏适当的模型不确定性的量化,以传达信任预测的程度。最近,在概率深度学习中已经制定了几种估计不确定性的实用工具。但是,在空气质量预测领域的域中没有经验应用和广泛的比较这些工具。因此,这项工作在空气质量预测的真实环境中应用了最先进的不确定性量化。通过广泛的实验,我们描述了培训概率模型,并根据经验性能,信心可靠性,置信度估计和实际适用性评估其预测性不确定性。我们还使用空气质量数据中固有的“自由”对抗培训和利用时间和空间相关性提出改善这些模型。我们的实验表明,所提出的模型比以前的工作更好地在量化数据驱动空气质量预测中的不确定性方面表现出。总体而言,贝叶斯神经网络提供了更可靠的不确定性估计,但可能挑战实施和规模。其他可扩展方法,如深合奏,蒙特卡罗(MC)辍学和随机重量平均-Gaussian(SWAG)可以执行良好,如果正确应用,但具有不同的权衡和性能度量的轻微变化。最后,我们的结果表明了不确定性估计的实际影响,并证明了,实际上,概率模型更适合提出知情决策。代码和数据集可用于\ url {https:/github.com/abdulmajid-murad/deep_probabilistic_forecast}
translated by 谷歌翻译
对于电网操作,具有精细时间和空间分辨率的太阳能发电准确预测对于电网的操作至关重要。然而,与数值天气预报(NWP)结合机器学习的最先进方法具有粗略分辨率。在本文中,我们采用曲线图信号处理透视和型号的多网站光伏(PV)生产时间序列作为图表上的信号,以捕获它们的时空依赖性并实现更高的空间和时间分辨率预测。我们提出了两种新颖的图形神经网络模型,用于确定性多站点PV预测,被称为图形 - 卷积的长期内存(GCLSTM)和图形 - 卷积变压器(GCTRAFO)模型。这些方法仅依赖于生产数据并利用PV系统提供密集的虚拟气象站网络的直觉。所提出的方法是在整整一年的两组数据集中评估:1)来自304个真实光伏系统的生产数据,以及2)模拟生产1000个PV系统,包括瑞士分布。该拟议的模型优于最先进的多站点预测方法,用于预测前方6小时的预测视野。此外,所提出的模型以NWP优于最先进的单站点方法,如前方的视野上的输入。
translated by 谷歌翻译
敦促智能技术实现开放式无线电接入网络(O-RAN)中计算资源的自动分配,以节省计算资源,提高它们的利用率并降低延迟。但是,要解决此资源分配问题的现有问题制定是不合适的,因为它定义了以不适当的方式为资源的容量实用性,并且往往会导致太多延迟。此外,只有在贪婪的搜索基于贪婪搜索的情况下才能解决现有问题,这并不理想,因为它可能会被粘在本地最佳擎天。考虑到那些,提出了一种更好地描述问题的新配方。另外,作为众所周知的全球搜索元启发式方法,设计了一种用于解决新问题制定的进化算法(EA),以找到资源分配方案,以主动和动态地部署计算资源以用于处理即将到来的流量数据。在几个现实世界数据集和新生成的人工数据集中进行的实验研究,具有超出现实世界数据集的具有更多特性的实验数据集已经在不同参数设置下显示了基线贪婪算法的显着优越性。此外,采用实验研究来比较所提出的EA和两种变体,以指示不同算法选择的影响。
translated by 谷歌翻译
随着交通预测技术的发展,时尚预测模型引起了学术界社区和工业的越来越多。然而,大多数现有的研究侧重于减少模型的预测误差,而是忽略由区域内空间事件的不均匀分布引起的错误。在本文中,我们研究了区域分区问题,即最佳网格尺寸选择问题(OGSS),其目的是通过选择最佳网格尺寸来最小化时空预测模型的真正误差。为了解决OGSS,我们通过最小化其上限来分析时空预测模型的真正误差的上限,并最大限度地减少真实误差。通过深入分析,我们发现当模型网格数量从1增加到最大允许值时,真正误差的上限将减少随后增加。然后,我们提出了两种算法,即三元搜索和迭代方法,自动找到最佳网格尺寸。最后,实验验证了预测误差是否具有与其上限相同的趋势,并且实际误差的上限相对于模型网格数量的上限的变化趋势将降低。同时,在一个情况下,通过选择最佳网格尺寸,可以提高最先进的预测算法的订单调度结果高达13.6%,这表明了我们在调整该区域上的方法的有效性用于时空预测模型的分区。
translated by 谷歌翻译