在世界上语言中编码的文化多样性有风险,因为在越来越多的全球化的背景下,许多语言在过去几十年中濒临灭绝。为了保留这种多样性,首先是必要了解推动语言灭绝的东西,以及哪些机制可能能够共存。在这里,我们使用理论和数据驱动的角度研究语言转换机制。使用Twitter和人口普查数据对多语种社团进行大规模实证分析,产生了广泛的语言共存空间模式。它根据语言扬声器的混合来分离,在不相交语言域的边界上进行多种语言。要了解这些不同的国家如何出现,特别是变得稳定,我们提出了一种在学习其他语言时达到语言共存的模型,并且当双语有利于使用濒危语言时。在比例框架中进行的模拟突出了人们流动性引起的空间相互作用的重要性,以解释混合状态的稳定性或两个语言区域之间的边界的存在。此外,我们发现语言的历史至关重要,了解他们现在的状态。
translated by 谷歌翻译
不同的代理需要进行预测。他们观察到相同的数据,但有不同的模型:他们预测使用不同的解释变量。我们研究哪个代理商认为它们具有最佳的预测能力 - 通过最小的主观后均匀平均平方预测误差来衡量 - 并且显示它如何取决于样本大小。使用小样品,我们呈现结果表明它是使用低维模型的代理。对于大型样品,通常是具有高维模型的代理,可能包括无关的变量,但从未排除相关的变量。我们将结果应用于拍卖生产资产拍卖中的获胜模型,以争辩于企业家和具有简单模型的投资者将在新部门过度代表,并了解解释横断面变异的“因素”的扩散资产定价文学中的预期股票回报。
translated by 谷歌翻译
该研究解决了在用线性鉴别学习建模拐点形态时出现的一系列方法问题。以半成本德国名词系统为例,我们说明了如何对表单和意义的代表作出的决策如何影响模型性能。我们澄清,为了建模频率效应在学习中,必须利用增量学习而不是学习的肠胃。我们还讨论如何设置模型,以近似语境中的流动词的学习。此外,我们说明了如何在这种方法中如何以相当大的细节建模。通常,该模型为已知的单词提供了优异的存储器,但适当地对未经展示数据进行了更有限的性能,符合德国原住民的德国名词拐点和泛化性能的半生产力。
translated by 谷歌翻译
实际和公平地建模机器学习中型群体差距的动态仍然是一个公开问题。特别是,我们渴望不假设人工群体之间固有的差异的模型 - 而是通过上诉对绝大群体的不平等初始条件的吸引力来实现差异。在本文中,每个代理商都有一个真实值的特征$ x $(例如,信用评分),通过“真实”二进制标签$ Y $代表资格(例如,贷款)。每个代理商交替(1)从贝贝斯 - 最佳机器学习分类器中接收二进制分类标签$ \ hat {y} $(例如,贷款批准)观察$ x $和(2)可以通过模仿成功更新他们的资格资格$ y $在孤立的群体中,策略(例如,寻求提升)他们所属的代理商。我们考虑在不同群体之间的资格率$ \ pr(y = 1)$之间的差异以及这种差异变化如何受到一系列贝叶斯 - 最佳分类器,在全球人口上反复培训。我们使用复制器方程来模拟每个亚父舒膏(组)的演变资格率,它来自一类模仿过程。我们表明,由于均匀的分类器部署,亚步骤之间的资格率之间的差异可能持续到一组非琐碎的均衡状态,即使在除初始资格密度除外的各个方面,群体在所有方面相同。我们接下来模拟常见的公平干预措施对该动态系统的效果以及能够永久消除群级资格差距的新反馈控制机制。我们通过讨论模型和调查结果的局限性以及概述潜在的未来工作来结束。
translated by 谷歌翻译
强大的机器学习模型的开发中的一个重要障碍是协变量的转变,当训练和测试集的输入分布时发生的分配换档形式在条件标签分布保持不变时发生。尽管现实世界应用的协变量转变普遍存在,但在现代机器学习背景下的理论理解仍然缺乏。在这项工作中,我们检查协变量的随机特征回归的精确高尺度渐近性,并在该设置中提出了限制测试误差,偏差和方差的精确表征。我们的结果激发了一种自然部分秩序,通过协变速转移,提供足够的条件来确定何时何时损害(甚至有助于)测试性能。我们发现,过度分辨率模型表现出增强的协会转变的鲁棒性,为这种有趣现象提供了第一个理论解释之一。此外,我们的分析揭示了分销和分发外概率性能之间的精确线性关系,为这一令人惊讶的近期实证观察提供了解释。
translated by 谷歌翻译
当前的语言模型可以产生高质量的文本。他们只是复制他们之前看到的文本,或者他们学习了普遍的语言抽象吗?要取笑这些可能性,我们介绍了乌鸦,这是一套评估生成文本的新颖性,专注于顺序结构(n-gram)和句法结构。我们将这些分析应用于四种神经语言模型(LSTM,变压器,变换器-XL和GPT-2)。对于本地结构 - 例如,单个依赖性 - 模型生成的文本比来自每个模型的测试集的人类生成文本的基线显着不那么新颖。对于大规模结构 - 例如,总句结构 - 模型生成的文本与人生成的基线一样新颖甚至更新颖,但模型仍然有时复制,在某些情况下,在训练集中重复超过1000字超过1,000字的通道。我们还表现了广泛的手动分析,表明GPT-2的新文本通常在形态学和语法中形成良好,但具有合理的语义问题(例如,是自相矛盾)。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
已经引入了生成流量网络(GFlowNETS)作为在主动学习背景下采样多样化候选的方法,具有培训目标,其使它们与给定奖励功能成比例地进行比例。在本文中,我们显示了许多额外的GFLOWN的理论特性。它们可用于估计联合概率分布和一些变量未指定的相应边际分布,并且特别感兴趣地,可以代表像集合和图形的复合对象的分布。 Gflownets摊销了通常通过计算昂贵的MCMC方法在单个但训练有素的生成通行证中进行的工作。它们还可用于估计分区功能和自由能量,给定子集(子图)的超标(超图)的条件概率,以及给定集合(图)的所有超标仪(超图)的边际分布。我们引入了熵和相互信息估计的变体,从帕累托前沿采样,与奖励最大化策略的连接,以及随机环境的扩展,连续动作和模块化能量功能。
translated by 谷歌翻译
有许多可用于选择优先考虑治疗的可用方法,包括基于治疗效果估计,风险评分和手工制作规则的遵循申请。我们将秩加权平均治疗效应(RATY)指标作为一种简单常见的指标系列,用于比较水平竞争范围的治疗优先级规则。对于如何获得优先级规则,率是不可知的,并且仅根据他们在识别受益于治疗中受益的单位的方式进行评估。我们定义了一系列速率估算器,并证明了一个中央限位定理,可以在各种随机和观测研究环境中实现渐近精确的推断。我们为使用自主置信区间的使用提供了理由,以及用于测试关于治疗效果中的异质性的假设的框架,与优先级规则相关。我们对速率的定义嵌套了许多现有度量,包括QINI系数,以及我们的分析直接产生了这些指标的推论方法。我们展示了我们从个性化医学和营销的示例中的方法。在医疗环境中,使用来自Sprint和Accor-BP随机对照试验的数据,我们发现没有明显的证据证明异质治疗效果。另一方面,在大量的营销审判中,我们在一些数字广告活动的治疗效果中发现了具有的强大证据,并证明了如何使用率如何比较优先考虑估计风险的目标规则与估计治疗效益优先考虑的目标规则。
translated by 谷歌翻译
\ EMPH {人工智能}(AI)系统越来越多地参与影响我们生活的决策,确保自动决策是公平的,道德已经成为最优先事项。直观地,我们觉得类似人的决定,人工代理人的判断应该必然地以一些道德原则为基础。然而,如果有关决定所基础的所有有关因素的全部信息,可以真正伦理(人类或人为)和公平(根据任何道德理论)和公平(根据公平的任何概念)的规定在决策时。这提出了两个问题:(1)在设置中,我们依赖使用通过监督学习获得的分类器的AI系统,存在一些感应/泛化,即使在学习期间也可能不存在一些相关属性。 (2)根据游戏揭示任何 - 无论是道德的纯策略都不可避免地易于剥削,建模这些决定。此外,在许多游戏中,只能通过使用混合策略来获得纳什均衡,即实现数学上最佳结果,决定必须随机化。在本文中,我们认为,在监督学习设置中,存在至少以及确定性分类器的随机分类器,因此在许多情况下可能是最佳选择。我们支持我们的理论效果,具有一个实证研究,表明对随机人工决策者的积极社会态度,并讨论了与使用与当前的AI政策和标准化举措相关的随机分类器相关的一些政策和实施问题。
translated by 谷歌翻译
随机森林仍然是最受欢迎的现成监督学习算法之一。尽管他们记录了良好的经验成功,但直到最近,很少有很少的理论结果来描述他们的表现和行为。在这项工作中,我们通过建立随机森林和其他受监督学习集合的融合率来推动最近的一致性和渐近正常的工作。我们培养了广义U形统计的概念,并显示在此框架内,随机森林预测可能对比以前建立的较大的子样本尺寸可能保持渐近正常。我们还提供Berry-esseen的界限,以量化这种收敛的速度,使得分列大小的角色和确定随机森林预测分布的树木的角色。
translated by 谷歌翻译
人们容易概括到新型域和刺激的知识。我们提出了一种在计算模型中实例化的理论,基于跨域人类中的跨域泛化是对结构化(即,象征性)关系表示的模拟推断的情况。该模型是LISA和关系推论和学习的DORA模型的延伸。生成的模型在没有监控的情况下,从非关系输入中的关系和格式(即结构)(即,结构)既与强化学习的容量增强,利用这些表示来学习单个域,然后向新域推广首先通过模拟推理(即零拍摄学习)。我们展示了模型从各种简单的视觉刺激学习结构化关系表示的能力,并在视频游戏(突破和乒乓球)和几个心理任务之间进行跨域泛化。我们展示了模型的轨迹在学到关系时,旨在让孩子的轨迹镜头紧密地镜子,从文学中占据了儿童推理和类比制作的文献中的现象。该模型在域之间的概括能力展示了在其基础关系结构方面代表域的灵活性,而不是简单地就其投入和产出之间的统计关系而言。
translated by 谷歌翻译
本文报告了在应用多维缩放(MDS)技术中以创建语言研究中的语义地图的最先进。 MDS指的是一种统计技术,其表示对象(词汇项,语言上下文,语言等)作为空间中的点,使得对象之间的密切相似性对应于表示表示中的对应点之间的距离。我们专注于使用MDS与在跨语言变异研究中使用的并行语料库数据相结合。我们首先介绍了MD的数学基础,然后略微概述过去的研究,采用MDS技术与并行语料库数据结合使用。我们提出了一组术语,以简便地描述特定MDS应用程序的关键参数。然后,我们表明,这种计算方法是理论中立的,即它可以用来在各种语言理论框架中回答研究问题。最后,我们展示了这在语言学中的MDS研究中的两条发展程度的发展。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
探索是加强学习中最重要的任务之一,但它在动态编程范例中没有明确的有限问题(参见第2.4小节)。我们提供了对勘探的重新诠释,该探索可以应用于任何在线学习方法。我们通过从新方向接近探索来实现这个定义。在发现创建的探索概念之后,无法长途适用于解决动态编程的简单马尔可夫决策过程,我们重新探索。而不是扩展动态探索程序的结尾,我们延长了他们的手段。也就是说,而不是反复对一个过程中的每个国家动作对进行采样,我们定义修改代理到自身探索的行为。由此产生的探索定义可以应用于无限的问题和非动态学习方法,探测的动态概念不能容忍。要了解代理人的修改方式影响学习的方式,我们描述了一组代理的新结构:以$以$以$的距离(见脚注7)$ d_ {a} \,这表示可能的代理人的视角正在进行中。使用这些距离,我们定义了一种拓扑,并表明加强学习中的许多重要结构在代理空间中收敛源的拓扑上表现良好。
translated by 谷歌翻译
大型观察数据越来越多地提供健康,经济和社会科学等学科,研究人员对因果问题而不是预测感兴趣。在本文中,从旨在调查参与学校膳食计划对健康指标的实证研究,研究了使用非参数回归的方法估算异质治疗效果的问题。首先,我们介绍了与观察或非完全随机数据进行因果推断相关的设置和相关的问题,以及如何在统计学习工具的帮助下解决这些问题。然后,我们审查并制定现有最先进的框架的统一分类,允许通过非参数回归模型来估算单个治疗效果。在介绍模型选择问题的简要概述后,我们说明了一些关于三种不同模拟研究的方法的性能。我们通过展示一些关于学校膳食计划数据的实证分析的一些方法的使用来结束。
translated by 谷歌翻译
本文研究了基于Laplacian Eigenmaps(Le)的基于Laplacian EIGENMAPS(PCR-LE)的主要成分回归的统计性质,这是基于Laplacian Eigenmaps(Le)的非参数回归的方法。 PCR-LE通过投影观察到的响应的向量$ {\ bf y} =(y_1,\ ldots,y_n)$ to to changbood图表拉普拉斯的某些特征向量跨越的子空间。我们表明PCR-Le通过SoboLev空格实现了随机设计回归的最小收敛速率。在设计密度$ P $的足够平滑条件下,PCR-le达到估计的最佳速率(其中已知平方$ l ^ 2 $ norm的最佳速率为$ n ^ { - 2s /(2s + d) )} $)和健美的测试($ n ^ { - 4s /(4s + d)$)。我们还表明PCR-LE是\ EMPH {歧管Adaptive}:即,我们考虑在小型内在维度$ M $的歧管上支持设计的情况,并为PCR-LE提供更快的界限Minimax估计($ n ^ { - 2s /(2s + m)$)和测试($ n ^ { - 4s /(4s + m)$)收敛率。有趣的是,这些利率几乎总是比图形拉普拉斯特征向量的已知收敛率更快;换句话说,对于这个问题的回归估计的特征似乎更容易,统计上讲,而不是估计特征本身。我们通过经验证据支持这些理论结果。
translated by 谷歌翻译
十年自2010年以来,人工智能成功一直处于计算机科学和技术的最前沿,传染媒介空间模型已经巩固了人工智能最前沿的位置。与此同时,量子计算机已经变得更加强大,主要进步的公告经常在新闻中。这些区域的基础的数学技术比有时意识到更多的共同之处。传染媒介空间在20世纪30年代的量子力学的公理心脏上采取了位置,这一采用是从矢量空间的线性几何形状推导逻辑和概率的关键动机。粒子之间的量子相互作用是使用张量产品进行建模的,其也用于表达人工神经网络中的物体和操作。本文介绍了这些常见的数学区域中的一些,包括如何在人工智能(AI)中使用的示例,特别是在自动推理和自然语言处理(NLP)中。讨论的技术包括矢量空间,标量产品,子空间和含义,正交投影和否定,双向矩阵,密度矩阵,正算子和张量产品。应用领域包括信息检索,分类和含义,建模字传感和歧义,知识库的推断和语义构成。其中一些方法可能会在量子硬件上实现。该实施中的许多实际步骤都处于早期阶段,其中一些已经实现了。解释一些常见的数学工具可以帮助AI和量子计算中的研究人员进一步利用这些重叠,识别和沿途探索新方向。
translated by 谷歌翻译
Q-Learning,旨在以无模式的方式学习Markov决策过程(MDP)的最佳Q函数,位于加强学习的核心。当涉及到同步设置时(从每次迭代中从生成模型中从生成模型中汲取独立样本)时,已经对理解Q学习的样本效率进行了实质性进展。考虑一个$ \ gamma $ -discounted infinite-horizo​​ n mdp与状态空间$ \ mathcal {s} $和动作空间$ \ mathcal {a} $:要产生一个entrywise $ \ varepsilon $ - 最佳q函数的克制,最先进的Q-Learning理论需要超出$ \ FRAC {| \ Mathcal {s} || \ mathcal {a} || \ {(1- \ gamma)^ 5 \ varepsilon的示例大小^ {2}} $,它无法匹配现有的最低限度下限。这引起了自然问题:Q-Learning的急剧性复杂性是什么?是Q-Learning可怕的次优吗?本文为同步设置解决了这些问题:(1)当$ | \ mathcal {a} | = 1 $(使q学习减少到TD学习)时,我们证明了TD学习的样本复杂性是最佳的最佳和尺度为$ \ frac {| \ mathcal {s} |} {(1- \ gamma)^ 3 \ varepsilon ^ 2} $(最多到日志系数); (2)当$ | \ mathcal {a} | \ geq 2 $时,我们解决了q-learning的样本复杂性,按$ \ frac {| \ mathcal {s} || \ mathcal {a} || } {(1- \ gamma)^ 4 \ varepsilon ^ 2} $(最多到日志系数)。我们的理论推出了Q-Leature的严格次优,当$ | \ mathcal {a} | \ geq 2 $,并严格严格估计在q-learning中的负面影响。最后,我们扩展了我们的分析以适应异步Q-Learning(即,与马尔可夫样本的情况),锐化其样本复杂性的地平线依赖性为$ \ frac {1} {(1- \ gamma)^ 4} $。
translated by 谷歌翻译
当代理偏好未知的先验时,我们研究了在共享资源的稀缺时决策的问题问题,并且必须从数据中学到。将双面匹配市场作为一个跑步的例子,我们专注于分散的环境,代理商不会与中央权威分享他们的学习偏好。我们的方法基于再生内核希尔伯特空间中的偏好的表示,以及偏好的学习算法,其由于市场代理商之间的竞争而占不确定性的偏好。在规律性条件下,我们表明我们的偏好估算器以极少的最佳速率收敛。考虑到这一结果,我们推出了最佳策略,最大化代理商的预期收益,我们通过考虑机会成本来校准不确定的状态。我们还获得了激励兼容性属性,并表明学习策略的结果具有稳定性。最后,我们证明了一个公平性质,称赞根据学到的策略存在没有合理的嫉妒。
translated by 谷歌翻译