卷积层和损耗功能是深度学习中的两个基本组件。由于传统的深度学习内核的成功,尽管它们可以提供不同频率,方向和比例的不同频率,方向和尺度的丰富功能,但较不可能的Gabor内核变得不那么受欢迎。对于多级图像分割的现有损失函数,通常有准确性,鲁棒性对超参数的折衷以及用于组合不同损失的手动选择。因此,为了获得使用Gabor核心的益处,同时保持深度学习中的自动特征生成的优势,我们提出了一种完全可训练的Gabor的卷积层,其中所有Gabor参数都是通过BackPropagation培训的。此外,我们基于Pearson的相关系数提出了一种损失函数,这是准确的,对学习速率的准确,鲁棒性,并且不需要手动重量选择。在43d脑磁共振图像上的实验,具有19个解剖结构,表明,使用所提出的损失功能与常规和基于Gabor的内核的适当组合,我们可以训练只有160万参数的网络,以实现83的平均骰子系数%。该尺寸比V-NET小44倍,具有7100万参数。本文展示了在深度学习3D分割中使用学习参数核的潜力。
translated by 谷歌翻译
我们为Brats21挑战中的脑肿瘤分割任务提出了优化的U-Net架构。为了找到最佳模型架构和学习时间表,我们运行了一个广泛的消融研究来测试:深度监督损失,焦点,解码器注意,下降块和残余连接。此外,我们搜索了U-Net编码器的最佳深度,卷积通道数量和后处理策略。我们的方法赢得了验证阶段,并在测试阶段进行了第三位。我们已开放源代码以在NVIDIA深度学习示例GitHub存储库中重现我们的Brats21提交。
translated by 谷歌翻译
自动分割方法是医学图像分析的重要进步。特别是机器学习技术和深度神经网络,是最先进的大多数医学图像分割任务。类别不平衡的问题在医疗数据集中构成了重大挑战,病变通常占据相对于背景的相对于较小的体积。深度学习算法培训中使用的损失函数对类别不平衡的鲁棒性不同,具有模型收敛的直接后果。分割最常用的损耗函数基于交叉熵损耗,骰子丢失或两者的组合。我们提出了统一的联络损失,是一种新的分层框架,它概括了骰子和基于跨熵的损失,用于处理类别不平衡。我们评估五个公共可用的损失功能,类不平衡的医学成像数据集:CVC-ClinicDB,船舶提取数字视网膜图像(驱动器),乳房超声波2017(Bus2017),脑肿瘤分割2020(Brats20)和肾肿瘤分割2019 (套件19)。我们将损耗功能性能与六个骰子或基于跨熵的损耗函数进行比较,横跨二进制二进制,3D二进制和3D多包子分段任务,展示我们所提出的损失函数对类不平衡具有强大,并且始终如一地优于其他丢失功能。源代码可用:https://github.com/mlyg/unified-focal-loss
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
由于缺乏对未标记的结构的监督,部分监督的学习对于细分可能是具有挑战性的,并且直接应用完全监督学习的方法可能导致不兼容,这意味着地面真相不在损失功能的解决方案集合中。为了应对挑战,我们提出了一个深入的兼容学习(DCL)框架,该框架使用仅带有部分结构的图像来训练单个多标签分割网络。我们首先将部分监督的分割制定为与缺少标签兼容的优化问题,并证明其兼容性。然后,我们为模型配备有条件的分割策略,以将标签从多个部分注销的图像传播到目标。此外,我们提出了一种双重学习策略,该策略同时学习了标签传播的两个相反的映射,以对未标记的结构进行实质性的监督。这两种策略分别为兼容形式,分别称为条件兼容性和双重兼容性。我们显示该框架通常适用于常规损失功能。该方法对现有方法具有重大的性能提高,尤其是在只有小型培训数据集的情况下。三个细分任务的结果表明,所提出的框架可以实现匹配完全监督模型的性能。
translated by 谷歌翻译
语义图像分割是手术中的背景知识和自治机器人的重要前提。本领域的状态专注于在微创手术期间获得的传统RGB视频数据,但基于光谱成像数据的全景语义分割并在开放手术期间获得几乎没有注意到日期。为了解决文献中的这种差距,我们正在研究基于在开放手术环境中获得的猪的高光谱成像(HSI)数据的以下研究问题:(1)基于神经网络的HSI数据的充分表示是完全自动化的器官分割,尤其是关于数据的空间粒度(像素与Superpixels与Patches与完整图像)的空间粒度? (2)在执行语义器官分割时,是否有利用HSI数据使用HSI数据,即RGB数据和处理的HSI数据(例如氧合等组织参数)?根据基于20猪的506个HSI图像的全面验证研究,共注释了19个类,基于深度的学习的分割性能 - 贯穿模态 - 与输入数据的空间上下文一致。未处理的HSI数据提供优于RGB数据或来自摄像机提供商的处理数据,其中优势随着输入到神经网络的输入的尺寸而增加。最大性能(应用于整个图像的HSI)产生了0.89(标准偏差(SD)0.04)的平均骰子相似度系数(DSC),其在帧间间变异性(DSC为0.89(SD 0.07)的范围内。我们得出结论,HSI可以成为全自动手术场景理解的强大的图像模型,其具有传统成像的许多优点,包括恢复额外功能组织信息的能力。
translated by 谷歌翻译
大脑提取是预处理3D脑MRI数据的第一步之一。它是任何即将进行的大脑成像分析的先决条件。但是,由于大脑和人头的复杂结构,这并不是一个简单的分割问题。尽管文献中已经提出了多种解决方案,但我们仍然没有真正强大的方法。尽管以前的方法已将机器学习与结构/几何先验使用,但随着计算机视觉任务中深度学习的发展,对于此语义分割任务,建议的卷积神经网络体系结构有所增加。但是,大多数模型都致力于改善培训数据和损失功能,而架构的变化很小。在本文中,我们提出了一种称为EVC-NET的新颖架构。 EVC-NET在每个编码器块上添加了较低的比例输入。这增强了V-NET体系结构的多尺度方案,从而提高了模型的效率。有条件的随机字段,是深度学习时代之前的图像分割的一种流行方法,在这里重新引入,作为完善网络输出以捕获细分粒度结果的额外步骤。我们将我们的模型与HD-BET,Synthstrip和Brainy等最新方法进行比较。结果表明,即使训练资源有限,EVC-NET也可以达到更高的骰子系数和Jaccard指数以及较低的表面距离。
translated by 谷歌翻译
We present VoxelMorph, a fast learning-based framework for deformable, pairwise medical image registration. Traditional registration methods optimize an objective function for each pair of images, which can be time-consuming for large datasets or rich deformation models. In contrast to this approach, and building on recent learning-based methods, we formulate registration as a function that maps an input image pair to a deformation field that aligns these images. We parameterize the function via a convolutional neural network (CNN), and optimize the parameters of the neural network on a set of images. Given a new pair of scans, VoxelMorph rapidly computes a deformation field by directly evaluating the function. In this work, we explore two different training strategies. In the first (unsupervised) setting, we train the model to maximize standard image matching objective functions that are based on the image intensities. In the second setting, we leverage auxiliary segmentations available in the training data. We demonstrate that the unsupervised model's accuracy is comparable to state-of-the-art methods, while operating orders of magnitude faster. We also show that VoxelMorph trained with auxiliary data improves registration accuracy at test time, and evaluate the effect of training set size on registration. Our method promises to speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is freely available at http://voxelmorph.csail.mit.edu.
translated by 谷歌翻译
MRI中胎儿结构的体积测量很耗时,并且容易发生错误,因此需要自动分割。由于胎盘模糊边界和胎儿脑皮层复杂的褶皱,胎盘分割和准确的胎儿脑分割进行回旋评估特别具有挑战性。在本文中,我们研究了对问题的轮廓骰子损失的使用,并将其与其他边界损失以及联合骰子和横向内向损失进行比较。通过侵蚀,扩张和XOR操作员有效地计算出每个切片的损失。我们描述了类似于轮廓骰子指标的损失的新公式。骰子损失和轮廓骰子的组合为胎盘分割提供了最佳性能。对于胎儿脑部分割,最佳性能的损失是结合骰子丢失,随后是骰子和轮廓骰子损失的骰子,其性能比其他边界损失更好。
translated by 谷歌翻译
Brain tumor imaging has been part of the clinical routine for many years to perform non-invasive detection and grading of tumors. Tumor segmentation is a crucial step for managing primary brain tumors because it allows a volumetric analysis to have a longitudinal follow-up of tumor growth or shrinkage to monitor disease progression and therapy response. In addition, it facilitates further quantitative analysis such as radiomics. Deep learning models, in particular CNNs, have been a methodology of choice in many applications of medical image analysis including brain tumor segmentation. In this study, we investigated the main design aspects of CNN models for the specific task of MRI-based brain tumor segmentation. Two commonly used CNN architectures (i.e. DeepMedic and U-Net) were used to evaluate the impact of the essential parameters such as learning rate, batch size, loss function, and optimizer. The performance of CNN models using different configurations was assessed with the BraTS 2018 dataset to determine the most performant model. Then, the generalization ability of the model was assessed using our in-house dataset. For all experiments, U-Net achieved a higher DSC compared to the DeepMedic. However, the difference was only statistically significant for whole tumor segmentation using FLAIR sequence data and tumor core segmentation using T1w sequence data. Adam and SGD both with the initial learning rate set to 0.001 provided the highest segmentation DSC when training the CNN model using U-Net and DeepMedic architectures, respectively. No significant difference was observed when using different normalization approaches. In terms of loss functions, a weighted combination of soft Dice and cross-entropy loss with the weighting term set to 0.5 resulted in an improved segmentation performance and training stability for both DeepMedic and U-Net models.
translated by 谷歌翻译
由于图像的复杂性和活细胞的时间变化,来自明亮场光显微镜图像的活细胞分割具有挑战性。最近开发的基于深度学习(DL)的方法由于其成功和有希望的结果而在医学和显微镜图像分割任务中变得流行。本文的主要目的是开发一种基于U-NET的深度学习方法,以在明亮场传输光学显微镜中分割HeLa系的活细胞。为了找到适合我们数据集的最合适的体系结构,提出了剩余的注意U-net,并将其与注意力和简单的U-NET体系结构进行了比较。注意机制突出了显着的特征,并抑制了无关图像区域中的激活。残余机制克服了消失的梯度问题。对于简单,注意力和剩余的关注U-NET,我们数据集的平均值得分分别达到0.9505、0.9524和0.9530。通过将残留和注意机制应用在一起,在平均值和骰子指标中实现了最准确的语义分割结果。应用的分水岭方法适用于这种最佳的(残留的关注)语义分割结果,使每个单元格的特定信息进行了分割。
translated by 谷歌翻译
我们研究不同损失功能对医学图像病变细分的影响。尽管在处理自然图像时,跨凝结(CE)损失是最受欢迎的选择,但对于生物医学图像分割,由于其处理不平衡的情况,软骰子损失通常是首选的。另一方面,这两个功能的组合也已成功地应用于此类任务中。一个较少研究的问题是在存在分布(OOD)数据的情况下所有这些损失的概括能力。这是指在测试时间出现的样本,这些样本是从与训练图像不同的分布中得出的。在我们的情况下,我们将模型训练在始终包含病变的图像上,但是在测试时间我们也有无病变样品。我们通过全面的实验对内窥镜图像和糖尿病脚图像的溃疡分割进行了全面的实验,分析了不同损失函数对分布性能的最小化对分布性能的影响。我们的发现令人惊讶:在处理OOD数据时,CE-DICE损失组合在分割分配图像中表现出色,这使我们建议通过这种问题采用CE损失,因为它的稳健性和能够概括为OOD样品。可以在\ url {https://github.com/agaldran/lesion_losses_ood}找到与我们实验相关的代码。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
学习无标记数据的判别性表示是一项具有挑战性的任务。对比性的自我监督学习提供了一个框架,可以使用简单的借口任务中的相似性措施来学习有意义的表示。在这项工作中,我们为使用图像贴片上的对比度学习而无需使用明确的借口任务或任何进一步标记的微调来提出一个简单有效的框架,用于使用对比度学习进行自我监督的图像分割。完全卷积的神经网络(FCNN)以自我监督的方式进行训练,以辨别输入图像中的特征并获得置信图,从而捕获网络对同一类的对象的信念。根据对比度学习的置信图中的平均熵对正 - 和负斑进行采样。当正面斑块之间的信息分离很小时,假定会收敛,而正阴对对很大。我们评估了从多个组织病理学数据集分割核的任务,并通过相关的自我监督和监督方法显示出可比的性能。所提出的模型仅由一个具有10.8K参数的简单FCNN组成,需要大约5分钟才能收敛于高分辨率显微镜数据集,该数据集比相关的自我监督方法小的数量级以获得相似的性能。
translated by 谷歌翻译
脑肿瘤分割是医学图像分析中最具挑战性问题之一。脑肿瘤细分的目标是产生准确描绘脑肿瘤区域。近年来,深入学习方法在解决各种计算机视觉问题时表现出了有希望的性能,例如图像分类,对象检测和语义分割。基于深度学习的方法已经应用于脑肿瘤细分并取得了有希望的结果。考虑到最先进技术所制作的显着突破,我们使用本调查来提供最近开发的深层学习脑肿瘤分割技术的全面研究。在本次调查中选择并讨论了100多篇科学论文,广泛地涵盖了网络架构设计,在不平衡条件下的细分等技术方面,以及多种方式流程。我们还为未来的发展方向提供了富有洞察力的讨论。
translated by 谷歌翻译
Regular cameras and cell phones are able to capture limited luminosity. Thus, in terms of quality, most of the produced images from such devices are not similar to the real world. They are overly dark or too bright, and the details are not perfectly visible. Various methods, which fall under the name of High Dynamic Range (HDR) Imaging, can be utilised to cope with this problem. Their objective is to produce an image with more details. However, unfortunately, most methods for generating an HDR image from Multi-Exposure images only concentrate on how to combine different exposures and do not have any focus on choosing the best details of each image. Therefore, it is strived in this research to extract the most visible areas of each image with the help of image segmentation. Two methods of producing the Ground Truth were considered, as manual threshold and Otsu threshold, and a neural network will be used to train segment these areas. Finally, it will be shown that the neural network is able to segment the visible parts of pictures acceptably.
translated by 谷歌翻译
互动细分最近引起了专业任务的关注,需要专家输入来进一步提高分割性能。在这项工作中,我们提出了一种新颖的交互式分割框架,其中用户点击基于当前分割掩码的大小动态地调整。点击区域形成重量映射,并作为一种新的加权损失函数馈送到深度神经网络。为了评估我们的损失函数,采用了应用前景和背景用户的交互式U-Net(IU-Net)模型作为主要交互方法。我们在BCV数据集上培训并验证,同时从MSD数据集测试脾脏和结肠癌CT图像,与使用我们的加权损耗功能的标准U-Net相比,改善整体分割精度。应用动态用户点击大小通过仅利用单个用户交互,分别将整体准确性增加5.60%和10.39%。
translated by 谷歌翻译
大脑的血管为人脑提供所需的营养和氧气。作为大脑血液供应的脆弱部分,小血管的病理可能会引起严重的问题,例如脑小血管疾病(CSVD)。还显示CSVD与神经变性有关,例如阿尔茨海默氏病。随着7个特斯拉MRI系统的发展,可以实现较高的空间图像分辨率,从而使大脑中非常小的血管描绘。非深度学习的方法进行血管分割的方法,例如,弗兰吉的血管增强,随后的阈值能够将培养基分割至大容器,但通常无法分割小血管。这些方法对小容器的敏感性可以通过广泛的参数调整或手动校正来提高,尽管使它们耗时,费力,并且对于较大的数据集而言是不可行的。本文提出了一个深度学习架构,以自动在7特斯拉3D飞行时间(TOF)磁共振血管造影(MRA)数据中自动分割小血管。该算法对仅11个受试者的小型半自动分段数据进行训练和评估;使用六个进行培训,两个进行验证,三个进行测试。基于U-NET多尺度监督的深度学习模型使用训练子集进行了训练,并以一种自我监督的方式使用变形 - 意识到的学习以改善概括性能。针对测试集对拟议的技术进行了定量和定性评估,并获得了80.44 $ \ pm $ 0.83的骰子得分。此外,将所提出的方法的结果与选定的手动分割区域(62.07结果骰子)进行了比较,并通过变形感知的学习显示出显着改善(18.98 \%)。
translated by 谷歌翻译
Convolutional Neural Networks (CNNs) have been recently employed to solve problems from both the computer vision and medical image analysis fields. Despite their popularity, most approaches are only able to process 2D images while most medical data used in clinical practice consists of 3D volumes. In this work we propose an approach to 3D image segmentation based on a volumetric, fully convolutional, neural network. Our CNN is trained end-to-end on MRI volumes depicting prostate, and learns to predict segmentation for the whole volume at once. We introduce a novel objective function, that we optimise during training, based on Dice coefficient. In this way we can deal with situations where there is a strong imbalance between the number of foreground and background voxels. To cope with the limited number of annotated volumes available for training, we augment the data applying random non-linear transformations and histogram matching. We show in our experimental evaluation that our approach achieves good performances on challenging test data while requiring only a fraction of the processing time needed by other previous methods.
translated by 谷歌翻译
Deep learning methods have contributed substantially to the rapid advancement of medical image segmentation, the quality of which relies on the suitable design of loss functions. Popular loss functions, including the cross-entropy and dice losses, often fall short of boundary detection, thereby limiting high-resolution downstream applications such as automated diagnoses and procedures. We developed a novel loss function that is tailored to reflect the boundary information to enhance the boundary detection. As the contrast between segmentation and background regions along the classification boundary naturally induces heterogeneity over the pixels, we propose the piece-wise two-sample t-test augmented (PTA) loss that is infused with the statistical test for such heterogeneity. We demonstrate the improved boundary detection power of the PTA loss compared to benchmark losses without a t-test component.
translated by 谷歌翻译