This paper studies how to flexibly integrate reconstructed 3D models into practical 3D modeling pipelines such as 3D scene creation and rendering. Due to the technical difficulty, one can only obtain rough 3D models (R3DMs) for most real objects using existing 3D reconstruction techniques. As a result, physically-based rendering (PBR) would render low-quality images or videos for scenes that are constructed by R3DMs. One promising solution would be representing real-world objects as Neural Fields such as NeRFs, which are able to generate photo-realistic renderings of an object under desired viewpoints. However, a drawback is that the synthesized views through Neural Fields Rendering (NFR) cannot reflect the simulated lighting details on R3DMs in PBR pipelines, especially when object interactions in the 3D scene creation cause local shadows. To solve this dilemma, we propose a lighting transfer network (LighTNet) to bridge NFR and PBR, such that they can benefit from each other. LighTNet reasons about a simplified image composition model, remedies the uneven surface issue caused by R3DMs, and is empowered by several perceptual-motivated constraints and a new Lab angle loss which enhances the contrast between lighting strength and colors. Comparisons demonstrate that LighTNet is superior in synthesizing impressive lighting, and is promising in pushing NFR further in practical 3D modeling workflows. Project page: https://3d-front-future.github.io/LighTNet .
translated by 谷歌翻译
我们解决了从由一个未知照明条件照射的物体的多视图图像(及其相机姿势)从多视图图像(和它们的相机姿势)恢复物体的形状和空间变化的空间变化的问题。这使得能够在任意环境照明下呈现对象的新颖视图和对象的材料属性的编辑。我们呼叫神经辐射分解(NERFVERTOR)的方法的关键是蒸馏神经辐射场(NERF)的体积几何形状[MILDENHALL等人。 2020]将物体表示为表面表示,然后在求解空间改变的反射率和环境照明时共同细化几何形状。具体而言,Nerfactor仅使用重新渲染丢失,简单的光滑度Provers以及从真实学中学到的数据驱动的BRDF而无任何监督的表面法线,光可视性,Albedo和双向反射率和双向反射分布函数(BRDF)的3D神经领域-world brdf测量。通过显式建模光可视性,心脏请能够将来自Albedo的阴影分离,并在任意照明条件下合成现实的软或硬阴影。 Nerfactor能够在这场具有挑战性和实际场景的挑战和捕获的捕获设置中恢复令人信服的3D模型进行令人满意的3D模型。定性和定量实验表明,在各种任务中,内容越优于基于经典和基于深度的学习状态。我们的视频,代码和数据可在peoptom.csail.mit.edu/xiuming/projects/nerfactor/上获得。
translated by 谷歌翻译
We present a multi-view inverse rendering method for large-scale real-world indoor scenes that reconstructs global illumination and physically-reasonable SVBRDFs. Unlike previous representations, where the global illumination of large scenes is simplified as multiple environment maps, we propose a compact representation called Texture-based Lighting (TBL). It consists of 3D meshs and HDR textures, and efficiently models direct and infinite-bounce indirect lighting of the entire large scene. Based on TBL, we further propose a hybrid lighting representation with precomputed irradiance, which significantly improves the efficiency and alleviate the rendering noise in the material optimization. To physically disentangle the ambiguity between materials, we propose a three-stage material optimization strategy based on the priors of semantic segmentation and room segmentation. Extensive experiments show that the proposed method outperforms the state-of-the-arts quantitatively and qualitatively, and enables physically-reasonable mixed-reality applications such as material editing, editable novel view synthesis and relighting. The project page is at https://lzleejean.github.io/TexIR.
translated by 谷歌翻译
We present a method that takes as input a set of images of a scene illuminated by unconstrained known lighting, and produces as output a 3D representation that can be rendered from novel viewpoints under arbitrary lighting conditions. Our method represents the scene as a continuous volumetric function parameterized as MLPs whose inputs are a 3D location and whose outputs are the following scene properties at that input location: volume density, surface normal, material parameters, distance to the first surface intersection in any direction, and visibility of the external environment in any direction. Together, these allow us to render novel views of the object under arbitrary lighting, including indirect illumination effects. The predicted visibility and surface intersection fields are critical to our model's ability to simulate direct and indirect illumination during training, because the brute-force techniques used by prior work are intractable for lighting conditions outside of controlled setups with a single light. Our method outperforms alternative approaches for recovering relightable 3D scene representations, and performs well in complex lighting settings that have posed a significant challenge to prior work.
translated by 谷歌翻译
给定一组场景的图像,从新颖的观点和照明条件中重新渲染了这个场景是计算机视觉和图形中的一个重要且具有挑战性的问题。一方面,计算机视觉中的大多数现有作品通常对图像形成过程(例如直接照明和预定义的材料,以使场景参数估计可进行。另一方面,成熟的计算机图形工具允许对所有场景参数进行复杂的照片现实光传输的建模。结合了这些方法,我们通过学习神经预先计算的辐射转移功能,提出了一种在新观点下重新考虑的场景方法,该方法使用新颖的环境图隐含地处理全球照明效应。在单个未知的照明条件下,我们的方法可以仅在场景的一组真实图像上进行监督。为了消除训练期间的任务,我们在训练过程中紧密整合了可区分的路径示踪剂,并提出了合成的OLAT和真实图像丢失的组合。结果表明,场景参数的恢复分离在目前的现状,因此,我们的重新渲染结果也更加现实和准确。
translated by 谷歌翻译
神经辐射场(NERF)是一种普遍的视图综合技术,其表示作为连续体积函数的场景,由多层的感知来参数化,其提供每个位置处的体积密度和视图相关的发射辐射。虽然基于NERF的技术在代表精细的几何结构时,具有平稳变化的视图依赖性外观,但它们通常无法精确地捕获和再现光泽表面的外观。我们通过引入Ref-nerf来解决这些限制,该ref-nerf替换了nerf的视图依赖性输出辐射的参数化,使用反射辐射的表示和使用空间不同场景属性的集合来构造该函数的表示。我们展示了与正常载体上的规范器一起,我们的模型显着提高了镜面反射的现实主义和准确性。此外,我们表明我们的模型的外向光线的内部表示是可解释的,可用于场景编辑。
translated by 谷歌翻译
将现有的旅游照片从部分捕获的场景扩展到完整的场景是摄影应用的理想体验之一。尽管对照片的外推进行了充分的研究,但是将照片(即自拍照)从狭窄的视野推断到更广阔的视野,同时保持相似的视觉样式是更具挑战性的。在本文中,我们提出了一个分解的神经重新渲染模型,以从混乱的户外互联网照片集中产生逼真的新颖观点,该视图可以使应用程序包括可控场景重新渲染,照片外推甚至外推3D照片生成。具体而言,我们首先开发出一种新颖的分解重新渲染管道,以处理几何,外观和照明分解中的歧义。我们还提出了一种合成的培训策略,以应对互联网图像中意外的阻塞。此外,为了推断旅游照片时增强照片现实主义,我们提出了一个新颖的现实主义增强过程来补充外观细节,该过程会自动传播质地细节,从狭窄的捕获照片到外推神经渲染图像。室外场景上的实验和照片编辑示例证明了我们在照片现实主义和下游应用中提出的方法的出色性能。
translated by 谷歌翻译
We present HARP (HAnd Reconstruction and Personalization), a personalized hand avatar creation approach that takes a short monocular RGB video of a human hand as input and reconstructs a faithful hand avatar exhibiting a high-fidelity appearance and geometry. In contrast to the major trend of neural implicit representations, HARP models a hand with a mesh-based parametric hand model, a vertex displacement map, a normal map, and an albedo without any neural components. As validated by our experiments, the explicit nature of our representation enables a truly scalable, robust, and efficient approach to hand avatar creation. HARP is optimized via gradient descent from a short sequence captured by a hand-held mobile phone and can be directly used in AR/VR applications with real-time rendering capability. To enable this, we carefully design and implement a shadow-aware differentiable rendering scheme that is robust to high degree articulations and self-shadowing regularly present in hand motion sequences, as well as challenging lighting conditions. It also generalizes to unseen poses and novel viewpoints, producing photo-realistic renderings of hand animations performing highly-articulated motions. Furthermore, the learned HARP representation can be used for improving 3D hand pose estimation quality in challenging viewpoints. The key advantages of HARP are validated by the in-depth analyses on appearance reconstruction, novel-view and novel pose synthesis, and 3D hand pose refinement. It is an AR/VR-ready personalized hand representation that shows superior fidelity and scalability.
translated by 谷歌翻译
最近,神经隐式渲染技术已经迅速发展,并在新型视图合成和3D场景重建中显示出很大的优势。但是,用于编辑目的的现有神经渲染方法提供了有限的功能,例如刚性转换,或不适用于日常生活中的一般物体的细粒度编辑。在本文中,我们通过编码神经隐性字段,并在网格顶点上编码神经隐式字段,并在网格顶点上编码纹理代码,从而促进了一组编辑功能,包括网格引导的几何形状编辑,指定的纹理编辑,纹理交换,纹理交换,,纹理交换,,纹理编辑,,纹理编辑,,纹理编辑,,纹理编辑,,纹理编辑,,纹理编辑,,纹理编辑,,纹理编辑。填充和绘画操作。为此,我们开发了几种技术,包括可学习的符号指标,以扩大基于网格的表示,蒸馏和微调机制的空间区分性,以稳定地收敛,以及空间感知的优化策略,以实现精确的纹理编辑。关于真实和合成数据的广泛实验和编辑示例都证明了我们方法在表示质量和编辑能力上的优越性。代码可在项目网页上找到:https://zju3dv.github.io/neumesh/。
translated by 谷歌翻译
传统的多视图光度立体声(MVP)方法通常由多个不相交阶段组成,从而导致明显的累积错误。在本文中,我们提出了一种基于隐式表示的MVP的神经反向渲染方法。给定通过多个未知方向灯照亮的非陆层物体的多视图图像,我们的方法共同估计几何形状,材料和灯光。我们的方法首先采用多光图像来估计每视图正常地图,这些图用于使从神经辐射场得出的正态定向。然后,它可以根据具有阴影可区分的渲染层共同优化表面正态,空间变化的BRDF和灯。优化后,重建的对象可用于新颖的视图渲染,重新定义和材料编辑。合成数据集和真实数据集的实验表明,与现有的MVP和神经渲染方法相比,我们的方法实现了更准确的形状重建。我们的代码和模型可以在https://ywq.github.io/psnerf上找到。
translated by 谷歌翻译
Photo-realistic free-viewpoint rendering of real-world scenes using classical computer graphics techniques is challenging, because it requires the difficult step of capturing detailed appearance and geometry models. Recent studies have demonstrated promising results by learning scene representations that implicitly encode both geometry and appearance without 3D supervision. However, existing approaches in practice often show blurry renderings caused by the limited network capacity or the difficulty in finding accurate intersections of camera rays with the scene geometry. Synthesizing high-resolution imagery from these representations often requires time-consuming optical ray marching. In this work, we introduce Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering. NSVF defines a set of voxel-bounded implicit fields organized in a sparse voxel octree to model local properties in each cell. We progressively learn the underlying voxel structures with a diffentiable ray-marching operation from only a set of posed RGB images. With the sparse voxel octree structure, rendering novel views can be accelerated by skipping the voxels containing no relevant scene content. Our method is typically over 10 times faster than the state-of-the-art (namely, NeRF (Mildenhall et al., 2020)) at inference time while achieving higher quality results. Furthermore, by utilizing an explicit sparse voxel representation, our method can easily be applied to scene editing and scene composition. We also demonstrate several challenging tasks, including multi-scene learning, free-viewpoint rendering of a moving human, and large-scale scene rendering. Code and data are available at our website: https://github.com/facebookresearch/NSVF.
translated by 谷歌翻译
Indoor scenes typically exhibit complex, spatially-varying appearance from global illumination, making inverse rendering a challenging ill-posed problem. This work presents an end-to-end, learning-based inverse rendering framework incorporating differentiable Monte Carlo raytracing with importance sampling. The framework takes a single image as input to jointly recover the underlying geometry, spatially-varying lighting, and photorealistic materials. Specifically, we introduce a physically-based differentiable rendering layer with screen-space ray tracing, resulting in more realistic specular reflections that match the input photo. In addition, we create a large-scale, photorealistic indoor scene dataset with significantly richer details like complex furniture and dedicated decorations. Further, we design a novel out-of-view lighting network with uncertainty-aware refinement leveraging hypernetwork-based neural radiance fields to predict lighting outside the view of the input photo. Through extensive evaluations on common benchmark datasets, we demonstrate superior inverse rendering quality of our method compared to state-of-the-art baselines, enabling various applications such as complex object insertion and material editing with high fidelity. Code and data will be made available at \url{https://jingsenzhu.github.io/invrend}.
translated by 谷歌翻译
我们提出了一种有效的方法,用于从多视图图像观察中联合优化拓扑,材料和照明。与最近的多视图重建方法不同,通常在神经网络中产生纠缠的3D表示,我们将三角形网格输出具有空间不同的材料和环境照明,这些方法可以在任何传统的图形引擎中未修改。我们利用近期工作在可差异化的渲染中,基于坐标的网络紧凑地代表体积纹理,以及可微分的游行四边形,以便直接在表面网上直接实现基于梯度的优化。最后,我们介绍了环境照明的分流和近似的可分辨率配方,以有效地回收全频照明。实验表明我们的提取模型用于高级场景编辑,材料分解和高质量的视图插值,全部以三角形的渲染器(光栅化器和路径示踪剂)的交互式速率运行。
translated by 谷歌翻译
Google Research Basecolor Metallic Roughness Normal Multi-View Images NeRD Volume Decomposed BRDF Relighting & View synthesis Textured MeshFigure 1: Neural Reflectance Decomposition for Relighting. We encode multiple views of an object under varying or fixed illumination into the NeRD volume.We decompose each given image into geometry, spatially-varying BRDF parameters and a rough approximation of the incident illumination in a globally consistent manner. We then extract a relightable textured mesh that can be re-rendered under novel illumination conditions in real-time.
translated by 谷歌翻译
在本文中,我们为复杂场景进行了高效且强大的深度学习解决方案。在我们的方法中,3D场景表示为光场,即,一组光线,每组在到达图像平面时具有相应的颜色。对于高效的新颖视图渲染,我们采用了光场的双面参数化,其中每个光线的特征在于4D参数。然后,我们将光场配向作为4D函数,即将4D坐标映射到相应的颜色值。我们训练一个深度完全连接的网络以优化这种隐式功能并记住3D场景。然后,特定于场景的模型用于综合新颖视图。与以前需要密集的视野的方法不同,需要密集的视野采样来可靠地呈现新颖的视图,我们的方法可以通过采样光线来呈现新颖的视图并直接从网络查询每种光线的颜色,从而使高质量的灯场呈现稀疏集合训练图像。网络可以可选地预测每光深度,从而使诸如自动重新焦点的应用。我们的小说视图合成结果与最先进的综合结果相当,甚至在一些具有折射和反射的具有挑战性的场景中优越。我们在保持交互式帧速率和小的内存占地面积的同时实现这一点。
translated by 谷歌翻译
照片中的户外场景的照片拟实的编辑需要对图像形成过程的深刻理解和场景几何,反射和照明的准确估计。然后可以在保持场景Albedo和几何形状的同时进行照明的微妙操纵。我们呈现NERF-OSR,即,基于神经辐射场的户外场景复兴的第一种方法。与现有技术相比,我们的技术允许仅使用在不受控制的设置中拍摄的户外照片集合的场景照明和相机视点。此外,它能够直接控制通过球面谐波模型所定义的场景照明。它还包括用于阴影再现的专用网络,这对于高质量的室外场景致密至关重要。为了评估所提出的方法,我们收集了几个户外站点的新基准数据集,其中每个站点从多个视点拍摄和不同的时间。对于每个定时,360度环境映射与颜色校准Chequerboard一起捕获,以允许对实际真实的真实数据进行准确的数值评估。反对本领域的状态的比较表明,NERF-OSR能够以更高的质量和逼真的自阴影再现来实现可控的照明和视点编辑。我们的方法和数据集将在https://4dqv.mpi-inf.mpg.de/nerf-OSR/上公开可用。
translated by 谷歌翻译
用于运动中的人类的新型视图综合是一个具有挑战性的计算机视觉问题,使得诸如自由视视频之类的应用。现有方法通常使用具有多个输入视图,3D监控或预训练模型的复杂设置,这些模型不会概括为新标识。旨在解决这些限制,我们提出了一种新颖的视图综合框架,以从单视图传感器捕获的任何人的看法生成现实渲染,其具有稀疏的RGB-D,类似于低成本深度摄像头,而没有参与者特定的楷模。我们提出了一种架构来学习由基于球体的神经渲染获得的小说视图中的密集功能,并使用全局上下文修复模型创建完整的渲染。此外,增强剂网络利用了整体保真度,即使在原始视图中的遮挡区域中也能够产生细节的清晰渲染。我们展示了我们的方法为单个稀疏RGB-D输入产生高质量的合成和真实人体演员的新颖视图。它概括了看不见的身份,新的姿势,忠实地重建面部表情。我们的方法优于现有人体观测合成方法,并且对不同水平的输入稀疏性具有稳健性。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
人类的重大是一项非常可取但具有挑战性的任务。现有作品要么需要使用光阶段捕获的昂贵的一亮(OLAT)捕获的数据,要么无法自由地改变渲染身体的观点。在这项工作中,我们提出了一个原则上的框架,即Relighting4D,该框架可以使自由观看点仅在未知的照明下从人类视频中获得重新拍摄。我们的关键见解是,可以将人体的几何形状和反射率分解为正常,遮挡,弥漫和镜头图的一组神经场。这些神经场进一步整合到反射性吸引物理的渲染中,其中神经场中的每个顶点吸收并反映了环境的光。可以以一种自我监督的方式从视频中学到整个框架,并采用专门的知识培训为正则化。对真实和合成数据集的广泛实验表明,我们的框架能够通过自由观看点重新确认动态人类参与者。
translated by 谷歌翻译
我们提出了一种从单个图像中编辑复杂室内照明的方法,其深度和光源分割掩码。这是一个极具挑战性的问题,需要对复杂的光传输进行建模,并仅通过对场景的部分LDR观察,将HDR照明从材料和几何形状中解散。我们使用两个新颖的组件解决了这个问题:1)一种整体场景重建方法,该方法估计场景反射率和参数3D照明,以及2)一个神经渲染框架,从我们的预测中重新呈现场景。我们使用基于物理的室内光表示,可以进行直观的编辑,并推断可见和看不见的光源。我们的神经渲染框架结合了基于物理的直接照明和阴影渲染,深层网络近似于全球照明。它可以捕获具有挑战性的照明效果,例如柔软的阴影,定向照明,镜面材料和反射。以前的单个图像逆渲染方法通常纠缠场景照明和几何形状,仅支持对象插入等应用程序。取而代之的是,通过将参数3D照明估计与神经场景渲染相结合,我们演示了从单个图像中实现完整场景重新确定(包括光源插入,删除和替换)的第一种自动方法。所有源代码和数据将公开发布。
translated by 谷歌翻译