大多数传统人群计数方法利用完全监督的学习框架来学习场景图像和人群密度映射之间的映射。在这种完全监督培训设置的情况下,需要大量昂贵且耗时的像素级注释,以产生密度图作为监控。减少昂贵标签的一种方法是利用未标记图像之间的自我结构信息和内在关系。与利用原始图像级别的这些关系和结构信息的先前方法不同,我们从潜在特征空间探讨了这种自我关系,因为它可以提取更丰富的关系和结构信息。具体而言,我们提出了S $ ^ 2 $ FPR,其可以提取结构信息,并在潜在空间中学习粗良好的金字塔特征的部分订单,以便更好地与大规模未标记的图像计数。此外,我们收集了一个新的未标记的人群计数数据集(Fudan-UCC),总共有4,000张图片进行培训。一个副产物是我们提出的S $ ^ 2 $ FPR方法可以利用未标记图像之间的潜在空间中的众多部分订单来加强模型表示能力,并减少人群计数任务的估计误差。关于四个基准数据集的大量实验,即UCF-QNRF,Shanghaitech Parta和Partb以及UCF-CC-50,与先前半监督方法相比,我们的方法显示了我们的方法。源代码和数据集可用于https://github.com/bridgeqiqi/s2fpr。
translated by 谷歌翻译