Creativity is an indispensable part of human cognition and also an inherent part of how we make sense of the world. Metaphorical abstraction is fundamental in communicating creative ideas through nuanced relationships between abstract concepts such as feelings. While computer vision benchmarks and approaches predominantly focus on understanding and generating literal interpretations of images, metaphorical comprehension of images remains relatively unexplored. Towards this goal, we introduce MetaCLUE, a set of vision tasks on visual metaphor. We also collect high-quality and rich metaphor annotations (abstract objects, concepts, relationships along with their corresponding object boxes) as there do not exist any datasets that facilitate the evaluation of these tasks. We perform a comprehensive analysis of state-of-the-art models in vision and language based on our annotations, highlighting strengths and weaknesses of current approaches in visual metaphor Classification, Localization, Understanding (retrieval, question answering, captioning) and gEneration (text-to-image synthesis) tasks. We hope this work provides a concrete step towards developing AI systems with human-like creative capabilities.
translated by 谷歌翻译
整合多个在线社交网络(OSN)对许多下游社交挖掘任务(例如用户偏好建模,建议和链接预测)具有重要意义。但是,不幸的是,伴随着越来越多的隐私问题,泄漏敏感用户信息。如何完全利用来自不同在线社交网络的数据,同时保存用户隐私仍然无法解决。为此,我们提出了一个跨网络的社交用户嵌入框架,即DP-Crosue,以一种隐私性的方式学习用户的全面表示。我们共同考虑具有不同隐私保证的部分调整社交网络的信息。特别是,对于每个异质社交网络,我们首先引入一个混合差异隐私概念,以捕获异构数据类型的隐私期望的变化。接下来,为了找到跨社交网络的用户链接,我们进行了无监督的基于用户嵌入的对齐方式,其中通过异质网络嵌入技术实现了用户嵌入。为了进一步增强用户嵌入,一种新颖的跨网络GCN嵌入模型旨在通过那些对齐用户跨网络传输知识。在三个现实世界数据集上进行的广泛实验表明,我们的方法对用户兴趣预测任务以及捍卫用户属性推理攻击的嵌入进行了重大改进。
translated by 谷歌翻译
为了成功推荐(SR)成功,最近的作品着重于设计有效的顺序编码器,融合侧面信息以及挖掘额外的积极的自我实施信号。在每个时间步骤中对负面项目进行采样的策略较少探索。由于用户在培训过程中的兴趣和模型更新的动态,因此考虑用户的非相互作用项目的随机抽样项目作为负面的项目可能是不明智的。结果,该模型将不准确地了解用户对项目的偏好。识别信息性负面因素是具有挑战性的,因为内容的负面项目与动态变化的兴趣和模型参数相关(并且抽样过程也应该是有效的)。为此,我们建议为SR(Genni)生成负样本(项目)。根据当前SR模型对项目的学习用户偏好,在每个时间步骤中都采样了负项目。提出了有效的实施,以进一步加速生成过程,使其可扩展到大规模推荐任务。在四个公共数据集上进行的广泛实验验证了为SR提供高质量的负样本的重要性,并证明了Genni的有效性和效率。
translated by 谷歌翻译
对看不见的环境变化的深入强化学习的概括通常需要对大量各种培训变化进行政策学习。我们从经验上观察到,接受过许多变化的代理商(通才)倾向于在一开始就更快地学习,但是长期以来其最佳水平的性能高原。相比之下,只接受一些变体培训的代理商(专家)通常可以在有限的计算预算下获得高回报。为了两全其美,我们提出了一个新颖的通才特权训练框架。具体来说,我们首先培训一名通才的所有环境变化。当它无法改善时,我们会推出大量的专家,并从通才克隆过重量,每个人都接受了训练,以掌握选定的一小部分变化子集。我们终于通过所有专家的示范引起的辅助奖励恢复了通才的培训。特别是,我们调查了开始专业培训的时机,并在专家的帮助下比较策略以学习通才。我们表明,该框架将政策学习的信封推向了包括Procgen,Meta-World和Maniskill在内的几个具有挑战性和流行的基准。
translated by 谷歌翻译
场景文本识别(str)是图像和文本之间的重要桥梁,吸引了丰富的研究关注。虽然卷积神经网络(CNNS)在此任务中取得了显着的进展,但大多数现有工作都需要额外的模块(上下文建模模块)来帮助CNN捕获全局依赖项来解决归纳偏差并加强文本特征之间的关系。最近,该变压器已被提出作为通过自我关注机制的全球背景建模的有希望的网络,但在应用于识别时主要缺点是效率。我们提出了一个1-D拆分来解决复杂性的挑战,并用变压器编码器替换CNN,以减少对上下文建模模块的需求。此外,最近的方法使用冻结的初始嵌入来指导解码器对文本进行解码,导致精度损失。我们建议使用从变压器编码器中学到的学习学习的可读初始嵌入,使其自适应不同的输入图像。最重要的是,我们介绍了一个新颖的文本识别架构,名为基于变压器的文本识别器,其中包含三个阶段(转换,特征提取和预测)组成的初始嵌入指导(TRIG)。广泛的实验表明,我们的方法可以在文本识别基准上实现最先进的。
translated by 谷歌翻译
基于学习的培训方法的方法通常需要大量包含现实布局的高质量场景并支持有意义的互动。然而,用于体现AI(EAI)挑战的当前模拟器仅提供具有有限数量的布局的模拟室内场景。本文呈现出发光,第一研究框架采用最先进的室内场景综合算法,以在体现AI挑战的情况下生成大规模模拟场景。此外,我们通过支持复杂的家庭任务的能力自动和定量地评估生成的室内场景的质量。发光结合了一种新颖的场景生成算法(受限的随机现场生成(CSSG)),实现了具有人类设计的场景的竞争性能。在发光,EAI任务执行器,任务指令生成模块和视频呈现工具包中可以集体为实现的AI代理商的培训和评估集体为新场景产生大量多模式数据集。广泛的实验结果表明了发光产生的数据的有效性,使对泛化和鲁棒性的体现特性进行全面评估。
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
translated by 谷歌翻译