低成本单眼的3D对象检测在自主驾驶中起着基本作用,而其精度仍然远非令人满意。在本文中,我们挖掘了3D对象检测任务,并将其重构为对象本地化和外观感知的子任务,这有​​利于整个任务的互惠信息的深度挖掘。我们介绍了一个名为DFR-Net的动态特征反射网络,其中包含两种新的独立模块:(i)首先将任务特征分开的外观定位特征反射模块(ALFR),然后自相互反映互核特征; (ii)通过自学习方式自适应地重建各个子任务的培训过程的动态内部交易模块(DIT)。关于挑战基蒂数据集的广泛实验证明了DFR网的有效性和泛化。我们在基蒂测试集中的所有单眼3D对象探测器中排名第一(直到2021年3月16日)。所提出的方法在许多尖端的3D检测框架中也容易在较忽略的成本下以忽略的成本来播放。该代码将公开可用。
translated by 谷歌翻译
由于LIDAR传感器捕获的精确深度信息缺乏准确的深度信息,单眼3D对象检测是一个关键而挑战的自主驾驶任务。在本文中,我们提出了一种立体引导的单目3D对象检测网络,称为SGM3D,其利用立体图像提取的鲁棒3D特征来增强从单眼图像中学到的特征。我们创新地研究了多粒度域适配模块(MG-DA)以利用网络的能力,以便仅基于单手套提示产生立体模拟功能。利用粗均衡特征级以及精细锚级域适配,以引导单眼分支。我们介绍了一个基于IOO匹配的对齐模块(iou-ma),用于立体声和单眼域之间的对象级域适应,以减轻先前阶段中的不匹配。我们对最具挑战性的基蒂和Lyft数据集进行了广泛的实验,并实现了新的最先进的性能。此外,我们的方法可以集成到许多其他单眼的方法中以提高性能而不引入任何额外的计算成本。
translated by 谷歌翻译
受益于医疗保健数据的数字化和计算能力的发展,机器学习方法越来越多地用于医疗领域。在医疗保健机器学习中已经确定了公平性问题,导致对有限医疗资源的不公平分配或某些群体的健康风险过多。因此,解决公平问题最近引起了医疗保健社区的越来越多的关注。然而,机器学习的机器学习与机器学习中的公平性的交集仍在研究中。在这篇综述中,我们通过暴露公平问题,总结可能的偏见,整理缓解方法并指出挑战以及未来的机会来建立桥梁。
translated by 谷歌翻译
神经体系结构搜索方法寻求具有有效的体重共享超级网训练的最佳候选者。但是,最近的研究表明,关于独立架构和共享重量网络之间的性能的排名一致性差。在本文中,我们提出了提前引导的一声NAS(PGONA),以加强超级网的排名相关性。具体而言,我们首先探讨激活功能的效果,并提出基于三明治规则的平衡采样策略,以减轻超级网中的重量耦合。然后,采用了拖鞋和禅宗得分来指导超级网的训练,并具有排名相关性损失。我们的PGONA在CVPR2022第二轻型NAS挑战赛的SuperNet轨道中排名第三。代码可在https://github.com/pprp/cvpr2022-nas?competition-track1-3th-solution中找到。
translated by 谷歌翻译
已显示在文本上训练的NLP模型可以重现人类的刻板印象,当系统大规模部署系统时,可以放大边缘化组的危害。我们适应了Koch等人的代理 - 信号 - 局势(ABC)刻板印象模型。(2016年)从社会心理学作为系统研究和发现语言模型(LMS)中刻板印象群体特征关联的框架。我们介绍了用于测量语言模型的刻板印象关联的灵敏度测试(集合)。为了使用ABC模型评估集合和其他措施,我们从美国受试者那里收集小组特征判断,以与英语LM刻板印象进行比较。最后,我们扩展了此框架以测量相互切换身份的LM定型观念。
translated by 谷歌翻译
我们为路边摄像机提出了一个针对交通现场的新颖务实框架。提出的框架涵盖了基础架构辅助自动驾驶的路边知觉管道的全堆,包括对象检测,对象定位,对象跟踪和多相机信息融合。与以前的基于视觉的感知框架依赖于深度偏移或训练中的3D注释不同,我们采用模块化解耦设计并引入基于具有里程碑意义的3D本地化方法,在此方法可以很好地解耦,以便可以轻松地训练该模型仅基于2D注释。所提出的框架适用于带有针孔或鱼眼镜的光相机或热摄像机。我们的框架部署在位于Ellsworth Rd的两车道回旋处。和美国密歇根州安阿伯市的State St.,提供7x24实时交通流量监测和高精度车辆轨迹提取。整个系统在低功率边缘计算设备上有效地运行,全部端到端延迟小于20ms。
translated by 谷歌翻译
尽管脑肿瘤分割的准确性最近有所提高,但结果仍然表现出较低的置信度和稳健性。不确定性估计是改变这种情况的一种有效方法,因为它提供了对分割结果的信心。在本文中,我们提出了一个可信赖的脑肿瘤分割网络,该网络可以产生可靠的分割结果和可靠的不确定性估计,而不会过多的计算负担和骨干网络的修改。在我们的方法中,不确定性是使用主观逻辑理论明确建模的,该理论将主干神经网络的预测视为主观观点,通过将分割的类概率参数视为差异分布。同时,可信赖的分割框架学习了从功能中收集可靠证据的功能,从而导致最终分割结果。总体而言,我们统一的可信赖分割框架使该模型具有可靠性和鲁棒性,对分布式样本。为了评估我们的模型在鲁棒性和可靠性方面的有效性,在Brats 2019数据集中进行了定性和定量实验。
translated by 谷歌翻译
在线知识蒸馏会在所有学生模型之间进行知识转移,以减轻对预培训模型的依赖。但是,现有的在线方法在很大程度上依赖于预测分布并忽略了代表性知识的进一步探索。在本文中,我们提出了一种用于在线知识蒸馏的新颖的多尺度功能提取和融合方法(MFEF),其中包括三个关键组成部分:多尺度功能提取,双重注意和功能融合,以生成更有信息的特征图,以用于蒸馏。提出了在通道维度中的多尺度提取利用分界线和catenate,以提高特征图的多尺度表示能力。为了获得更准确的信息,我们设计了双重注意,以适应重要的渠道和空间区域。此外,我们通过功能融合来汇总并融合了以前的处理功能地图,以帮助培训学生模型。关于CIF AR-10,CIF AR-100和Cinic-10的广泛实验表明,MFEF转移了更有益的代表性知识,以蒸馏和胜过各种网络体系结构之间的替代方法
translated by 谷歌翻译
过滤器修剪方法通过去除选定的过滤器来引入结构稀疏性,因此对于降低复杂性特别有效。先前的作品从验证较小规范的过滤器的角度从经验修剪网络中造成了较小的最终结果贡献。但是,此类标准已被证明对过滤器的分布敏感,并且由于修剪后的容量差距是固定的,因此准确性可能很难恢复。在本文中,我们提出了一种称为渐近软簇修剪(ASCP)的新型过滤器修剪方法,以根据过滤器的相似性来识别网络的冗余。首先通过聚类来区分来自参数过度的网络的每个过滤器,然后重建以手动将冗余引入其中。提出了一些聚类指南,以更好地保留特征提取能力。重建后,允许更新过滤器,以消除错误选择的效果。此外,还采用了各种修剪率的衰减策略来稳定修剪过程并改善最终性能。通过逐渐在每个群集中生成更相同的过滤器,ASCP可以通过通道添加操作将其删除,几乎没有准确性下降。 CIFAR-10和Imagenet数据集的广泛实验表明,与许多最新算法相比,我们的方法可以取得竞争性结果。
translated by 谷歌翻译
我们考虑合成任意长度的多动运动人类运动序列的问题。现有方法已经掌握了单一方案中的运动序列生成,但未能推广到多动和任意长度序列。我们通过提出一种新型有效方法来填补这一空白,该方法利用了经常性变压器的表现力和条件变异自动编码器的生成丰富性。所提出的迭代方法能够在线性空间和时间进行任意数量的动作和帧中生成平滑而逼真的人类运动序列。我们训练并评估使用基本操作标签增强的Prox数据集的建议方法。实验评估表明,与最先进的情况相比,FID得分和语义一致性指标的显着改善。
translated by 谷歌翻译