最近,通过“向导”模拟游戏收集了一类以任务为导向的对话(TOD)数据集。但是,《巫师》数据实际上是模拟的数据,因此与现实生活中的对话根本不同,这些对话更加嘈杂和随意。最近,Seretod挑战赛是组织的,并发布了Mobilecs数据集,该数据集由来自中国移动的真实用户和客户服务人员之间的真实世界对话框组成。基于Mobilecs数据集,Seretod挑战具有两个任务,不仅评估了对话系统本身的构建,而且还检查了对话框成绩单中的信息提取,这对于建立TOD的知识库至关重要。本文主要介绍了Mobilecs数据集对这两项任务的基线研究。我们介绍了如何构建两个基线,遇到的问题以及结果。我们预计基线可以促进令人兴奋的未来研究,以建立针对现实生活任务的人类机器人对话系统。
translated by 谷歌翻译
组合多个传感器使机器人能够最大程度地提高其对环境的感知意识,并增强其对外部干扰的鲁棒性,对机器人导航至关重要。本文提出了可融合的基准测试,这是一个完整的多传感器数据集,具有多种移动机器人序列。本文提出了三项贡献。我们首先推进便携式和通用的多传感器套件,可提供丰富的感官测量值:10Hz激光镜点云,20Hz立体声框架图像,来自立体声事件相机的高速率和异步事件,来自IMU的200Hz惯性读数以及10Hz GPS信号。传感器已经在硬件中暂时同步。该设备轻巧,独立,并为移动机器人提供插件支持。其次,我们通过收集17个序列来构建数据集,该序列通过利用多个机器人平台进行数据收集来涵盖校园上各种环境。一些序列对现有的SLAM算法具有挑战性。第三,我们为将本地化和映射绩效评估提供了基础真理。我们还评估最新的大满贯方法并确定其局限性。该数据集将发布由原始传感器的设置,地面真相,校准数据和评估算法组成:https://ram-lab.com/file/site/site/multi-sensor-dataset。
translated by 谷歌翻译
组织病理学图像包含丰富的表型信息和病理模式,这是疾病诊断的黄金标准,对于预测患者预后和治疗结果至关重要。近年来,在临床实践中迫切需要针对组织病理学图像的计算机自动化分析技术,而卷积神经网络代表的深度学习方法已逐渐成为数字病理领域的主流。但是,在该领域获得大量细粒的注释数据是一项非常昂贵且艰巨的任务,这阻碍了基于大量注释数据的传统监督算法的进一步开发。最新的研究开始从传统的监督范式中解放出来,最有代表性的研究是基于弱注释,基于有限的注释的半监督学习范式以及基于自我监督的学习范式的弱监督学习范式的研究图像表示学习。这些新方法引发了针对注释效率的新自动病理图像诊断和分析。通过对130篇论文的调查,我们对从技术和方法论的角度来看,对计算病理学领域中有关弱监督学习,半监督学习以及自我监督学习的最新研究进行了全面的系统综述。最后,我们提出了这些技术的关键挑战和未来趋势。
translated by 谷歌翻译
通过利用未标记的对话框数据来开发半监督的面向任务的对话框(TOD)系统已吸引了越来越多的兴趣。对于对潜在状态TOD模型的半监督学习,经常使用变异学习,但遭受了通过离散潜在变量传播的梯度的令人讨厌的高度变化,以及间接优化目标对数的弊端。最近,一种称为关节随机近似(JSA)的替代算法已出现,用于学习具有令人印象深刻的性能的离散潜在可变模型。在本文中,我们建议将JSA应用于对潜在状态TOD模型的半监督学习,该模型称为JSA-TOD。据我们所知,JSA-TOD代表了开发基于JSA的半监督学习的第一批工作,用于对TOD系统(例如TOD系统)这样的长期顺序生成问题的离散潜在可变条件模型。广泛的实验表明,JSA-TOD明显优于其变异学习对应物。值得注意的是,使用20%标签的半监督JSA-TOD在Multiwoz2.1上的全面监督基线附近。
translated by 谷歌翻译
与EMNLP2022 SERETOD车间共同划分的半监督和增强任务的对话系统的挑战。
translated by 谷歌翻译
多个实例学习(MIL)广泛用于分析组织病理学全幻灯片图像(WSIS)。但是,现有的MIL方法不会明确地对数据分配进行建模,而仅通过训练分类器来歧视行李级或实例级决策边界。在本文中,我们提出了DGMIL:一个特征分布引导为WSI分类和阳性贴剂定位的深度MIL框架。我们没有设计复杂的判别网络体系结构,而是揭示组织病理学图像数据的固有特征分布可以作为分类的非常有效的指南。我们提出了一种集群条件的特征分布建模方法和基于伪标签的迭代特征空间改进策略,以便在最终特征空间中,正面和负面实例可以轻松分离。 CamelyOn16数据集和TCGA肺癌数据集的实验表明,我们的方法为全球分类和阳性贴剂定位任务提供了新的SOTA。
translated by 谷歌翻译
多传感器融合对于准确可靠的自主驾驶系统至关重要。最近的方法基于点级融合:通过相机功能增强激光雷达点云。但是,摄像头投影抛弃了相机功能的语义密度,阻碍了此类方法的有效性,尤其是对于面向语义的任务(例如3D场景分割)。在本文中,我们用BevFusion打破了这个根深蒂固的惯例,这是一个有效且通用的多任务多任务融合框架。它统一了共享鸟类视图(BEV)表示空间中的多模式特征,该空间很好地保留了几何信息和语义信息。为了实现这一目标,我们通过优化的BEV池进行诊断和提高视图转换中的钥匙效率瓶颈,从而将延迟降低了40倍以上。 BevFusion从根本上是任务不合时宜的,并且无缝支持不同的3D感知任务,几乎没有建筑变化。它在Nuscenes上建立了新的最新技术,在3D对象检测上获得了1.3%的MAP和NDS,而BEV MAP分段中的MIOU高13.6%,计算成本较低1.9倍。可以在https://github.com/mit-han-lab/bevfusion上获得复制我们结果的代码。
translated by 谷歌翻译
时间序列(TS)异常检测(AD)在各种应用中起重要作用,例如,金融和医疗保健监测中的欺诈检测。由于异常的本质上不可预测和高度不同,并且在历史数据中缺乏异常标签,而广告问题通常被制定为无监督的学习问题。现有解决方案的性能往往不令人满意,尤其是数据稀缺方案。为了解决这个问题,我们提出了一种新颖的自我监督的广告中的时间序列学习技术,即\ EMPH {DeepFib}。我们将问题模型为a \ emph {填写空白}游戏,通过屏蔽TS中的某些元素并将其抵御其余部分。考虑到TS数据中的两个共同的异常形状(点或序列异常值),我们实施了两个具有许多自我产生的训练样本的掩蔽策略。相应的自我估算网络可以提取比现有的广告解决方案更强大的时间关系,并有效地促进识别两种类型的异常。对于连续异常值,我们还提出了一种异常的本地化算法,可大大减少广告错误。各种现实世界TS数据集的实验表明,DeepFib优先于最先进的方法,通过大幅度,实现F1分数的高达65.2 \%$ 65.2 \%。
translated by 谷歌翻译
在本文中,我们提出了一种使用自我监督的多任务学习的基于变换器的多曝光图像融合框架的传输。该框架基于编码器解码器网络,可以在大型自然图像数据集上培训,并且不需要地面真理融合图像。我们根据多曝光图像的特点设计三个自我监督的重建任务,并使用多任务学习同时进行这些任务;通过该过程,网络可以学习多曝光图像的特征并提取更多的广义特征。此外,为了补偿在基于CNN的架构中建立远程依赖性的缺陷,我们设计了一个与变压器模块相结合的编码器。这种组合使网络能够专注于本地和全局信息。我们评估了我们的方法,并将其与最新释放的多曝光图像融合基准数据集进行了11个基于竞争的传统和深入学习的方法,我们的方法在主观和客观评估中实现了最佳性能。
translated by 谷歌翻译
仿真有可能改变在安全关键方案中部署的移动代理的强大算法的开发。然而,对现有模拟发动机的差的光敏性和缺乏不同的传感器方式保持关键障碍朝来实现这种潜力。在这里,我们呈现Vista,一个开源,数据驱动模拟器,用于为自动车辆集成多种类型的传感器。使用高保真度,实际数据集,Vista表示和模拟RGB摄像机,3D LIDAR和基于事件的相机,可以快速生成模拟中的新颖观点,从而富集可用于与难以实现的拐角案例的政策学习的数据在物理世界中捕获。使用Vista,我们展示了在每个传感器类型上培训和测试对控制策略的能力,并通过在全尺度自主车辆上进行展示这种方法的功率。在Vista中学到的政策展示了SIM-TEAR-REAL转移,而不是改进和更高的鲁棒性,而不是完全在现实世界数据上培训的鲁棒性。
translated by 谷歌翻译