Current approaches to empathetic response generation typically encode the entire dialogue history directly and put the output into a decoder to generate friendly feedback. These methods focus on modelling contextual information but neglect capturing the direct intention of the speaker. We argue that the last utterance in the dialogue empirically conveys the intention of the speaker. Consequently, we propose a novel model named InferEM for empathetic response generation. We separately encode the last utterance and fuse it with the entire dialogue through multi-head attention based intention fusion module to capture the speaker's intention. Besides, we utilize previous utterances to predict the last utterance, which simulates human's psychology to guess what the interlocutor may speak in advance. To balance the optimizing rates of the utterance prediction and response generation, a multi-task learning strategy is designed for InferEM. Experimental results demonstrate the plausibility and validity of InferEM in improving empathetic expression.
translated by 谷歌翻译
Cross-Lingual Summarization (CLS) aims at generating summaries in one language for the given documents in another language. CLS has attracted wide research attention due to its practical significance in the multi-lingual world. Though great contributions have been made, existing CLS works typically focus on short documents, such as news articles, short dialogues and guides. Different from these short texts, long documents such as academic articles and business reports usually discuss complicated subjects and consist of thousands of words, making them non-trivial to process and summarize. To promote CLS research on long documents, we construct Perseus, the first long-document CLS dataset which collects about 94K Chinese scientific documents paired with English summaries. The average length of documents in Perseus is more than two thousand tokens. As a preliminary study on long-document CLS, we build and evaluate various CLS baselines, including pipeline and end-to-end methods. Experimental results on Perseus show the superiority of the end-to-end baseline, outperforming the strong pipeline models equipped with sophisticated machine translation systems. Furthermore, to provide a deeper understanding, we manually analyze the model outputs and discuss specific challenges faced by current approaches. We hope that our work could benchmark long-document CLS and benefit future studies.
translated by 谷歌翻译
在本文中,我们介绍了CTC 2021的概述,这是针对母语人士的中文文本校正任务。我们详细描述了任务定义以及培训和评估的数据。我们还总结了该任务参与者调查的方法。我们希望为此任务收集和注释的数据集可以促进并加快该研究领域的未来发展。因此,伪培训数据,金标准验证数据和整个排行榜可在https://destwang.github.io/ctc2021-explorer/上在线公开获取。
translated by 谷歌翻译
本文提出了一种新颖的统一特征优化(UFO)范式,用于训练和在现实世界和大规模场景下进行深层模型,这需要集合多个AI功能。不明飞行物的目标是通过对所有任务进行大规模预修。与众所周知的基础模型相比,UFO具有两个不同的重点,即相对较小的模型大小,没有适应性成本:1)UFO以多任务学习方式将广泛的任务挤入中等尺寸的统一模型中并在转移到下游任务时进一步修剪模型大小。 2)不明飞行物不强调转移到新任务。相反,它旨在使修剪模型专门用于一个或多个已经看到的任务。有了这两个特征,UFO为灵活的部署提供了极大的便利,同时保持了大规模预处理的好处。 UFO的一个关键优点是修剪过程不仅可以减少模型的大小和推理消耗,而且还提高了某些任务的准确性。具体而言,UFO考虑了多任务培训,并对统一模型产生了两倍的影响:一些密切相关的任务具有相互利益,而某些任务相互冲突。不明飞行物设法通过新颖的网络体系结构搜索(NAS)方法来减少冲突并保留相互利益。对各种深度表示学习任务(即面部识别,人重新识别,车辆重新识别和产品检索)的实验表明,从UFO中修剪的模型比单件任务训练的对应物更高,但却具有更高的准确性较小的型号大小,验证不明飞行物的概念。此外,UFO还支持发布170亿个参数计算机视觉(CV)基础模型,该模型是该行业中最大的CV模型。
translated by 谷歌翻译
该技术报告提出了一种有效的自动驾驶运动预测方法。我们开发了一种基于变压器的方法,用于输入编码和轨迹预测。此外,我们提出了时间流动头来增强轨迹编码。最后,使用了有效的K均值集合方法。使用我们的变压器网络和集合方法,我们以1.90的最新Brier-Minfde得分赢得了Argoverse 2 Motion预测挑战的第一名。
translated by 谷歌翻译
本文旨在通过介绍第一个中国数学预训练的语言模型〜(PLM)来提高机器的数学智能,以有效理解和表示数学问题。与其他标准NLP任务不同,数学文本很难理解,因为它们在问题陈述中涉及数学术语,符号和公式。通常,它需要复杂的数学逻辑和背景知识来解决数学问题。考虑到数学文本的复杂性质,我们设计了一种新的课程预培训方法,用于改善由基本和高级课程组成的数学PLM的学习。特别是,我们首先根据位置偏见的掩盖策略执行令牌级预训练,然后设计基于逻辑的预训练任务,旨在分别恢复改组的句子和公式。最后,我们介绍了一项更加困难的预训练任务,该任务强制执行PLM以检测和纠正其生成的解决方案中的错误。我们对离线评估(包括九个与数学相关的任务)和在线$ A/B $测试进行了广泛的实验。实验结果证明了与许多竞争基线相比,我们的方法的有效性。我们的代码可在:\ textColor {blue} {\ url {https://github.com/rucaibox/jiuzhang}}}中获得。
translated by 谷歌翻译
电动汽车的蓬勃发展需要有效的电池拆卸,以使回收环境友好。目前,由于非结构化的环境和高度不确定性,电池拆卸仍然主要由人类(可能是由机器人的帮助)完成的。设计自动解决方案以提高工作效率并降低人类在高压和有毒环境中的风险是非常理想的。本文提出了一种新型的神经肯定方法,该方法增强了传统的变异自动编码器(VAE)模型,以根据原始感觉输入及其关系来学习符号运算符。符号操作员包括一个概率状态符号接地模型和一个状态过渡矩阵,用于预测每个执行后的状态,以实现自主任务和运动计划。最后,通过测试结果验证了该方法的可行性。
translated by 谷歌翻译
多语言预训练的语言模型在跨语言任务上表现出了令人印象深刻的表现。它极大地促进了自然语言处理在低资源语言上的应用。但是,当前的多语言模型仍然有些语言表现不佳。在本文中,我们提出了Cino(中国少数族裔训练的语言模型),这是一种用于中国少数语言的多语言预训练的语言模型。它涵盖了标准的中文,Yue中文和其他六种少数民族语言。为了评估多语言模型在少数族裔语言上的跨语性能力,我们从Wikipedia和新闻网站收集文档,并构建两个文本分类数据集,WCM(Wiki-Chinese-Minority)和CMNEWS(中国最少的新闻)。我们表明,Cino在各种分类任务上的表现明显优于基准。Cino模型和数据集可在http://cino.hfl-rc.com上公开获得。
translated by 谷歌翻译
Knowledge graph embedding (KGE) models learn the representation of entities and relations in knowledge graphs. Distance-based methods show promising performance on link prediction task, which predicts the result by the distance between two entity representations. However, most of these methods represent the head entity and tail entity separately, which limits the model capacity. We propose two novel distance-based methods named InterHT and InterHT+ that allow the head and tail entities to interact better and get better entity representation. Experimental results show that our proposed method achieves the best results on ogbl-wikikg2 dataset.
translated by 谷歌翻译
多模式情绪分析(MSA)是一种基本复杂的研究问题,因为不同方式与人类情绪表达的模糊性之间的异质性差距。虽然已经成功地建造了MSA的多模式表示,但仍有两个挑战需要解决:1)需要构建更强大的多模式表示来弥合异质性间隙并应对复杂的多模式相互作用和2)必须在整个信息流中有效地建模上下文动态。在这项工作中,我们提出了一种基于相互信息最大化和最小化和身份嵌入(MMMIE)的多模式表示模型。我们将模态对之间的相互信息最大化以及输入数据和相应功能之间的相互信息最小化,以挖掘模态不变和任务相关信息。此外,提出了身份嵌入,以提示下游网络来感知语境信息。两个公共数据集的实验结果证明了所提出的模型的有效性。
translated by 谷歌翻译