如何提取重要点云特征并估计它们之间的姿势仍然是一个具有挑战性的问题,因为点云的固有缺乏结构和暧昧的顺序排列。尽管对大多数3D计算机视觉任务的基于深度学习的方法进行了重大改进,例如对象分类,对象分割和点云注册,但功能之间的一致性在现有的基于学习的流水线上仍然没有吸引力。在本文中,我们提出了一种用于复杂对准场景的新型学习的对齐网络,标题为深度特征一致性,并由三个主模块组成:多尺度图形特征合并网络,用于将几何对应集转换为高维特征,对应加权用于构建多个候选内部子集的模块,以及命名为深度特征匹配的Procrustes方法,用于给出闭合方案来估计相对姿势。作为深度特征匹配模块的最重要步骤,构造每个Inlier子集的特征一致性矩阵以获得其主要向量作为相应子集的含义似然性。我们全面地验证了我们在3DMATCH数据集和基提ODOMOTRY数据集中的方法的鲁棒性和有效性。对于大型室内场景,3DMATCH数据集上的注册结果表明,我们的方法优于最先进的传统和基于学习的方法。对于Kitti户外场景,我们的方法仍然能够降低转换错误。我们还在交叉数据集中探讨其强大的泛化能力。
translated by 谷歌翻译
事件提取,旨在自动获取文档结构信息的技术,在许多领域中吸引了越来越多的关注。大多数现有工作通过将令牌视为不同的角色,令牌级多标签分类框架讨论此问题,同时忽略文档的编写方式。写作风格是一个特殊的内容,用于组织文件,它是相对固定在具有特殊领域的文档中(例如,财务,医疗文件等)。我们认为写作风格包含重要的线索来判断令牌的角色,这种模式的无知可能导致现有工作的性能下降。为此,我们将文档中的写作风格模拟作为参数角色的分布,即角色排名分配,并提出了一种基于角色排名分布的监督机制的事件提取模型,通过监督培训过程来捕获这种模式事件提取任务。我们将模型与在几个真实世界数据集上的最先进的方法进行比较。经验结果表明,我们的方法优于捕获模式的其他替代品。这验证了写入风格包含可以提高事件提取任务性能的有价值的信息。
translated by 谷歌翻译
现有的分布式协作多智能体增强学习(MARL)框架通常假设通过共识算法估计全球奖励的无向协调图和通信图。这种框架可能导致昂贵的通信成本,并且由于全球共识的要求,可扩展性差。在这项工作中,我们使用定向协调图研究Marls,并提出了一种分布式RL算法,其中本地策略评估基于本地值函数。通过与其邻居通过定向的学习诱导的通信图来实现每个代理的本地值函数,而不使用任何共识算法。采用基于参数扰动的零顺序优化(动物园)方法来实现梯度估计。通过与现有的基于动物园的RL算法进行比较,我们表明我们提出的分布式RL算法可确保高可扩展性。示出了分布式资源分配示例来说明我们算法的有效性。
translated by 谷歌翻译
人工神经网络(ANN)训练景观的非凸起带来了固有的优化困难。虽然传统的背传播随机梯度下降(SGD)算法及其变体在某些情况下是有效的,但它们可以陷入杂散的局部最小值,并且对初始化和普通公共表敏感。最近的工作表明,随着Relu激活的ANN的培训可以重新重整为凸面计划,使希望能够全局优化可解释的ANN。然而,天真地解决凸训练制剂具有指数复杂性,甚至近似启发式需要立方时间。在这项工作中,我们描述了这种近似的质量,并开发了两个有效的算法,这些算法通过全球收敛保证培训。第一算法基于乘法器(ADMM)的交替方向方法。它解决了精确的凸形配方和近似对应物。实现线性全局收敛,并且初始几次迭代通常会产生具有高预测精度的解决方案。求解近似配方时,每次迭代时间复杂度是二次的。基于“采样凸面”理论的第二种算法更简单地实现。它解决了不受约束的凸形制剂,并收敛到大约全球最佳的分类器。当考虑对抗性培训时,ANN训练景观的非凸起加剧了。我们将稳健的凸优化理论应用于凸训练,开发凸起的凸起制剂,培训Anns对抗对抗投入。我们的分析明确地关注一个隐藏层完全连接的ANN,但可以扩展到更复杂的体系结构。
translated by 谷歌翻译
实际经济体可以被视为一种顺序不完美信息游戏,具有许多异质,互动的各种代理类型的战略代理,例如消费者,公司和政府。动态一般均衡模型是在此类系统中建模经济活动,交互和结果的普通经济工具。然而,当所有代理商是战略和互动时,现有的分析和计算方法努力寻找明确的均衡,而联合学习是不稳定的并且具有挑战性。在其他人中,一个重要的原因是,一个经济代理人的行动可能会改变另一名代理人的奖励职能,例如,当公司更改价格或政府更改税收时,消费者的消费者的消费收入变化。我们表明,多代理深度加强学习(RL)可以发现稳定的解决方案,即通过使用结构的学习课程和高效的GPU,在经济模拟中,在经济仿真中,在经济模拟中,可以发现普遍存器类型的稳定解决方案。仿真和培训。概念上,我们的方法更加灵活,不需要不切实际的假设,例如市场清算,通常用于分析途径。我们的GPU实施使得能够在合理的时间范围内具有大量代理的经济体,例如,在一天内完成培训。我们展示了我们在实际商业周期模型中的方法,这是一个代表性的DGE模型系列,100名工人消费者,10家公司和政府税收和重新分配。我们通过近似最佳响应分析验证了学习的Meta-Game epsilon-Nash均衡,表明RL政策与经济直觉保持一致,我们的方法是建设性的,例如,通过明确地学习Meta-Game epsilon-Nash ePhilia的频谱打开RBC型号。
translated by 谷歌翻译
日志异常检测是IT操作(AIOPs)的人工智能领域的关键组成部分。考虑到变量域的日志数据,Retring为未知域的整个网络效率低于实际工业场景,特别是对于低资源域。但是,之前的深层模型仅仅集中在同一域中提取日志序列的语义,导致多域日志的概括。因此,我们提出了一种统一的基于变换器的日志异常检测框架(\ OurMethod {}),其包括预先曝光和基于适配器的调谐阶段。我们的模型首先在源域上留下来验证以获取日志数据的共享语义知识。然后,我们通过基于适配器的调谐将预磨模的模型传送到目标域。所提出的方法在包括一个源域和两个目标域的三个公共数据集上进行评估。实验结果表明,我们的简单且有效的方法,具有较少的可训练参数和较低的目标领域的培训成本,在三个基准上实现了最先进的性能。
translated by 谷歌翻译
除了以实体为中心的知识之外,通常组织为知识图(千克),事件也是世界上的必不可少的知识,这触发了活动以kg(ekg)等事件为中心的知识表示形式的春天。它在许多机器学习和人工智能应用中起着越来越重要的作用,例如智能搜索,问答,推荐和文本生成。本文提供了历史,本体实例和应用视图的ekg综合调查。具体而言,要彻底地表征EKG,我们专注于其历史,定义,架构归纳,获取,相关代表图形/系统和应用程序。其中研究了发展过程和趋势。我们进一步总结了透视方向,以促进对EKG的未来研究。
translated by 谷歌翻译
图形神经网络(GNN)在学习强大的节点表示中显示了令人信服的性能,这些表现在保留节点属性和图形结构信息的强大节点表示中。然而,许多GNNS在设计有更深的网络结构或手柄大小的图形时遇到有效性和效率的问题。已经提出了几种采样算法来改善和加速GNN的培训,但他们忽略了解GNN性能增益的来源。图表数据中的信息的测量可以帮助采样算法来保持高价值信息,同时消除冗余信息甚至噪声。在本文中,我们提出了一种用于GNN的公制引导(MEGUIDE)子图学习框架。 MEGUIDE采用两种新颖的度量:功能平滑和连接失效距离,以指导子图采样和迷你批次的培训。功能平滑度专为分析节点的特征而才能保留最有价值的信息,而连接失败距离可以测量结构信息以控制子图的大小。我们展示了MEGUIDE在多个数据集上培训各种GNN的有效性和效率。
translated by 谷歌翻译
最近,Vision-Language预训练的零拍图像分类已经表现出令人难以置信的成就,即该模型可以对任意类别进行分类而不看到该类别的其他注释图像。然而,目前尚不清楚如何在更广泛的视觉问题上进行零射识别,例如对象检测和语义分割。在本文中,我们通过在现成的预训练的视觉模型,即剪辑上建立零拍语义分割来定位零拍语义分割。很难因为语义分割和剪辑模型在不同的视觉粒度上执行,该语义分段处理在像素上时,而剪辑在图像上执行。为了解决处理粒度的差异,我们拒绝使用普遍的一级FCN基于FCN的框架,并倡导一个两级语义分割框架,其中第一阶段提取一个完全提取的掩模提案和第二阶段利用基于图像的剪辑模型在第一阶段生成的蒙版图像作物上执行零拍分类。我们的实验结果表明,这种简单的框架通过大型利润率超越了先前的最先进:+29.5 Hiou On Pascal VOC 2012 DataSet,+8.9 Hiou On Coco Stuff DataSet。凭借其简单性和强大的表现,我们希望本框架成为促进未来研究的基准。
translated by 谷歌翻译
面对面对话期间的响应声是社会互动的关键要素,在心理学研究中得到了很好的建立。通过非言语信号响应扬声器的话语,语调或行为实时,听众展示了它们如何从事对话。在这项工作中,我们构建了响应声侦听器数据集(RLD),从公共资源收集的对话视频语料库,其中包括67个扬声器,76个听众,具有三种不同的态度。我们将响应声聆听头生成任务定义为具有运动的运动和表达式的非言语头的合成,包括扬声器的音频和视觉信号。与言语驱动的手势或谈话主管不同,我们在这项任务中介绍了更多的模态,希望有利于几个研究领域,包括人类互动,视频到视频转换,跨模型理解和生成。此外,我们释放了一种态度调节的听力头生成基线。项目页面:\ url {https://project.mhzhou.com/rld}。
translated by 谷歌翻译