Uniapaired 3D对象完成旨在从不完整的输入预测完整的3D形状,而不知道训练期间完整和不完整的形状之间的对应关系。为了构建两个数据模式之间的对应关系,之前的方法通常会应用逆势训练以匹配编码器提取的全局形状特征。然而,这忽略了解码器的金字塔层次结构中嵌入的多级几何信息之间的对应关系,这使得先前的方法难以产生高质量的完整形状。为了解决这个问题,我们提出了一种新颖的未配对形状完成网络,命名为MFM-Net,使用多级特征匹配,将几何对应的学习分解成在点云解码器中的分层生成过程中的多级。具体地,MFM-Net采用双路径架构,以在解码器的不同层中建立多个特征匹配信道,然后与对手学习组合以合并来自完整和不完整的模式的特征的分布。此外,还应用了一种改进来增强细节。结果,MFM-Net利用更全面的理解来在本地到全局角度下建立完整和不完整的形状之间的几何对应,这使得能够更详细的几何推断来产生高质量的完整形状。我们对多个数据集进行全面实验,结果表明,我们的方法优于以前的未配对点云完成方法,具有大的余量。
translated by 谷歌翻译
医疗应用从计算机视觉中的快速进步受益。特别是患者监测,卧床人体姿势估计提供了重要的健康相关指标,具有医学条件评估的潜在价值。尽管该领域的进展巨大,但由于闭塞期间的大量模糊性,并且缺乏用于模型训练的手动标记数据的大型车辆,仍然是一个具有挑战性的任务,特别是具有隐私保留的热红外成像等领域,因此极大的兴趣。通过直接从数据学习功能的自我监督方法的有效性,我们提出了一种多模态条件变形AutoEncoder(MC-VAE),其能够重建在训练期间看到的缺失的模态。这种方法与HRNET一起使用,以使单个模态推断用于床上姿势估计。通过广泛的评估,我们证明身体位置可以从可用的方式得到有效地识别,通过高度依赖于在推理时间访问多种模式的基线模型的PAR结果上实现了PAR结果。拟议的框架支持未来的自我监督学习研究,从单个来源生成强大的模型,并期望它概括了临床环境中的许多未知分布。
translated by 谷歌翻译
多目标跟踪(MOT)的典型管道是使用探测器进行对象本地化,并在重新识别(RE-ID)之后进行对象关联。该管道通过对象检测和重新ID的最近进展部分而部分地激励,并且部分地通过现有的跟踪数据集中的偏差激励,其中大多数物体倾向于具有区分外观和RE-ID模型足以建立关联。为了响应这种偏见,我们希望重新强调多目标跟踪的方法也应该在对象外观不充分辨别时起作用。为此,我们提出了一个大型数据集,用于多人跟踪,人类具有相似的外观,多样化的运动和极端关节。由于数据集包含主要组跳舞视频,我们将其命名为“DanceTrack”。我们预计DanceTrack可以提供更好的平台,以开发更多的MOT算法,这些算法依赖于视觉识别并更依赖于运动分析。在我们的数据集上,我们在数据集上基准测试了几个最先进的追踪器,并在与现有基准测试中遵守DanceTrack的显着性能下降。 DataSet,项目代码和竞争服务器播放:\ url {https://github.com/danceTrack}。
translated by 谷歌翻译
预先训练的模型已经证明是强大的增强面向任务的对话系统。但是,目前的预训练方法主要关注增强对话的理解和生成任务,同时忽略对话策略的开发。在本文中,我们提出了一个小说预先训练的对话模型,明确地通过半监督学习明确地从有限标记的对话框和大规模未标记的对话框中学习对话策略。具体而言,我们在预训练期间介绍一个对话框预测任务,以便在预训练中进行策略优化,并使用一致性正则化术语在未标记的对话的帮助下优化学习的表示。我们还实施了一个浇注机制来称量合适的未标记对话框样本。经验结果表明,星系大大提高了面向任务为导向的对话系统的性能,并在基准数据集中实现了新的最先进结果:车载,多种多纤2.0和多纺,改善其端到端合并分数2.5,5.3和5.5分。我们还显示Galaxy比各种低资源设置下的现有模型更强大的少量射击能力。
translated by 谷歌翻译
我们系统地研究了拓扑空间的理论的基本属性,例如预先底座,子空间,分离,关联等的公理等前拓扑在知识结构理论中也称为知识空间。我们讨论知识空间理论,亚历山大空间和准序数空间的关系分离的公理语言,以及知识空间的主要项目中拓扑空间密度的应用。特别是,我们给出了技能多猿类的表征,使得描绘知识结构是一个知识空间,它在\ cite {falmagne2011 learning}或\ cite {xglj}中的问题答案,每当每个项目都有很多竞争力时;此外,我们提供了一个算法,用于找到任何有限知识空间的Atom主项目。
translated by 谷歌翻译
快速的基于立体声的3D对象探测器最近在推理时间感到很大进展。然而,它们的精确度远远落后于高精度的方法。我们认为主要原因是快速立体声方法中缺失或差的3D几何特征表示。为了解决这个问题,我们提出了一个有效的几何特征生成网络(EGFN)。我们的EGFN的关键是一种有效且有效的3D几何特征表示(EGFR)模块。在EGFR模块中,首先生成轻量级成本体积特征,然后将其有效地转换为3D空间,并且最后进行图像和3D空间中的多尺度特征,以获得3D几何特征:增强的轻量级voxel特色。此外,我们介绍了一种新的多尺度知识蒸馏策略,以指导多尺度3D几何特征学习。公共基准测试集的实验结果表明,建议的EGFN优于Yolostsereo3D,先进的快速方法,在Map $ 5.16 \%上的$ _ {3d} $以仅需12毫秒的成本,因此实现了更好的权衡立体声3D对象检测的准确性和效率。我们的代码将公开提供。
translated by 谷歌翻译
现实世界数据往往展现出长期分布,重量级别不平衡,其中大多数课程可以主导培训过程并改变少数阶层的决策边界。最近,研究人员调查了监督对长尾识别的对比学习的潜力,并证明它提供了强大的性能增益。在本文中,我们表明,虽然监督对比学习可以有助于提高性能,但过去的基线通过不平衡数据分布引入的均匀性差。这种差的均匀性在来自特征空间中具有差的少数阶级的样品中表现出来。为了解决这个问题,我们提出了有针对性的监督对比学习(TSC),从而提高了极度上的特征分布的均匀性。 TSC首先生成一组均匀分布在极度上的目标。然后,在训练期间使不同类别的特征会聚到这些不同的和均匀分布的目标。这迫使所有类别,包括少数群体类别,以维持特征空间中的统一分布,改善了类边界,即使在存在长尾数据的情况下也能提供更好的泛化。多个数据集的实验表明,TSC在长尾识别任务上实现了最先进的性能。
translated by 谷歌翻译
学习(IL)是数据挖掘应用中广泛存在的重要问题。典型的IL方法利用直观的类努力重新采样或重新重量直接平衡训练集。然而,特定领域的一些最近的研究努力表明,在没有课堂上操纵的情况下可以实现类别不平衡的学习。这提示我们思考两种不同的IL战略之间的关系和班级不平衡的性质。从根本上说,它们对应于IL中存在的两个必要的不平衡:来自不同类别的示例之间的数量差异以及单个类中的易于和硬示例之间,即阶级和级别的帧内不平衡。现有工程未能明确地考虑不平衡,因此遭受次优绩效。鉴于此,我们呈现了双重平衡的集合,即杜博士,一个多功能的集合学习框架。与普遍方法不同,Dube直接执行级别的级别和级别的平衡,而无需依赖基于距离的距离的计算,这允许它在计算效率时实现竞争性能。我们还提出了关于基于杜博伊的不同间/内部平衡策略的优缺点的详细讨论和分析。广泛的实验验证了所提出的方法的有效性。代码和示例可在https://github.com/iCde20222sub/duplebalance获得。
translated by 谷歌翻译
Imbalanced-leasemble,缩写为IMBens,是一个开源Python工具箱,用于快速实现和部署类别 - 不平衡数据的集合学习算法。它提供对多个最先进的集合不平衡学习(EIL)方法,可视化器和公用事业功能的访问,以处理类别不平衡问题。这些集合方法包括基于重采样的,例如/过度采样,以及重量基于/过度采样,例如,敏感的学习。除了实现之外,我们还扩展了传统的二进制EIL算法,与多级支持和重采样调度程序等新功能,从而使它们能够处理更复杂的任务。该软件包是在简单的,良好的API设计中开发的,遵循Scikit-Gearn的易于使用。 IMBens在MIT开源许可证下发布,可以从Python包索引(PYPI)安装。 https://github.com/zhiningliu1998/imbalanced-ensemble可以使用源代码,二进制文件,详细文档和使用示例。
translated by 谷歌翻译
具有多核光纤(MCF)无透镜微观镜片的定制光的产生广泛用于生物医学。然而,用于这种应用的计算机生成的全息图(CGHS)通常由迭代算法产生,这需要高计算工作,限制在体内光源刺激和光纤细胞操纵中的高级应用。纤维芯的随机和离散分布对CGHS引起了强烈的空间偏大,因此,非常需要一种能够快速生成MCF的量身定制的CGHS的方法。我们展示了一种新型阶段编码器深神经网络(Coreenet),它可以在近视频速率下为MCF产生精确定制的CGHS。模拟表明,与传统的CGH技术相比,CoreNet可以将计算时间加速两个大小,并增加产生的光场的保真度。首次,实时生成的定制CGHS在飞行中加载到仅相位的SLM,用于通过MCF微内窥镜在实验中产生动态光场。这铺设了实时细胞旋转的途径和几种需要在生物医学中实时高保真光传递的几种进一步的应用。
translated by 谷歌翻译