联合学习(FL)提供了一种高效的分散机器学习框架,其中培训数据仍然在网络中的远程客户端分发。虽然FL实现了使用物联网设备的隐私保留的移动边缘计算框架,但最近的研究表明,这种方法易于来自远程客户端的侧面中毒攻击。要解决FL的中毒攻击,我们提供了一个\ Textit {两阶段}防御算法,称为{lo} cal {ma}恶意的事实{r}(lomar)。在I阶段I中,通过使用内核密度估计方法测量其邻居的相对分布,LOMAR从每个远程客户端进行模型更新。在II阶段,最佳阈值近似以从统计角度来区分恶意和清洁更新。已经进行了四个现实数据集的综合实验,实验结果表明,我们的防御策略可以有效保护FL系统。 {具体来说,标签翻转攻击下的亚马逊数据集上的防御性能表明,与FG + Krum相比,LOMAR从96.0 \%$ 98.8 \%$ 96.0 \%$ 98.8 \%$增加目标标签测试精度,以及90.1美元的总平均测试准确性\%$至97.0 \%$。
translated by 谷歌翻译