联合学习(FL)提供了一种高效的分散机器学习框架,其中培训数据仍然在网络中的远程客户端分发。虽然FL实现了使用物联网设备的隐私保留的移动边缘计算框架,但最近的研究表明,这种方法易于来自远程客户端的侧面中毒攻击。要解决FL的中毒攻击,我们提供了一个\ Textit {两阶段}防御算法,称为{lo} cal {ma}恶意的事实{r}(lomar)。在I阶段I中,通过使用内核密度估计方法测量其邻居的相对分布,LOMAR从每个远程客户端进行模型更新。在II阶段,最佳阈值近似以从统计角度来区分恶意和清洁更新。已经进行了四个现实数据集的综合实验,实验结果表明,我们的防御策略可以有效保护FL系统。 {具体来说,标签翻转攻击下的亚马逊数据集上的防御性能表明,与FG + Krum相比,LOMAR从96.0 \%$ 98.8 \%$ 96.0 \%$ 98.8 \%$增加目标标签测试精度,以及90.1美元的总平均测试准确性\%$至97.0 \%$。
translated by 谷歌翻译
与传统机器学习(ML)相比,联邦学习(FL)被认为是解决移动设备的数据隐私问题的吸引力框架。使用Edge Server(ESS)作为中间人在接近度执行模型聚合可以减少传输开销,并且它能够在低延迟FL中实现很大的潜力,其中FL(HFL)的分层体系结构被吸引更多地关注。设计适当的客户选择策略可以显着提高培训性能,并且已广泛用于FL研究。然而,据我们所知,没有专注于HFL的研究。此外,HFL的客户选择面临的挑战比传统的FL更多,例如,客户端 - es对的时变连接和网络运营商的有限预算(否)。在本文中,我们调查了HFL的客户选择问题,其中no no学习成功参与客户的数量以改善培训性能(即,在每轮中选择多个客户端)以及每个ES的有限预算。基于上下文组合多武装强盗(CC-MAB)开发了一个称为上下文知识的在线客户选择(COCS)的在线策略。 COCs观察局部计算和客户端对传输的侧信息(上下文),并使客户选择决策最大化没有给出有限预算的实用程序。理论上,与强凸和非凸HFL上的Oracle策略相比,COCS遗憾地实现了载体遗憾。仿真结果还支持拟议的COCS政策对现实世界数据集的效率。
translated by 谷歌翻译
现代生物医学研究通常收集多视图数据,即在同一组对象上测量的多种类型的数据。高维多视图数据分析中的流行模型是将每个视图的数据矩阵分解为跨所有数据视图常见的潜在因子生成的低级常见源矩阵,对应于每个视图的低级别源矩阵和添加剂噪声矩阵。我们提出了一种用于该模型的新型分解方法,称为基于分解的广义规范相关分析(D-GCCA)。与大多数现有方法使用的欧几里德点产品空间相比,D-GCCA严格地定义了随机变量的L2空间的分解,从而能够为低秩矩阵恢复提供估计一致性。此外,为了良好校准共同的潜在因子,我们对独特的潜在因子施加了理想的正交性限制。然而,现有方法不充分考虑这种正交性,因此可能遭受未检测到的共同源变异的大量损失。我们的D-GCCA通过分离规范变量中的共同和独特的组分,同时从主成分分析的角度享受吸引人的解释,进一步逐步进行一步。此外,我们建议使用常见的或独特潜在因子解释的信号方差的可变级别比例,以选择最受影响的变量。我们的D-GCCA方法的一致估计是通过良好的有限样本数性能建立的,并且具有封闭式表达式,导致有效计算,特别是对于大规模数据。 D-GCCA在最先进的方法上的优越性也在模拟和现实世界数据示例中得到证实。
translated by 谷歌翻译
自然语言界面(NLIS)为用户提供了一种方便的方式来通过自然语言查询交互分析数据。然而,交互式数据分析是一种苛刻的过程,特别是对于新手数据分析师。从不同域探索大型和复杂的数据集时,数据分析师不一定有足够的关于数据和应用域的知识。它使他们无法有效地引起一系列查询并广泛导出理想的数据洞察力。在本文中,我们使用Step-Wise查询推荐模块开发NLI,以帮助用户选择适当的下一步探索操作。该系统采用数据驱动方法,以基于其查询日志生成用户兴趣的应用域的逐步语义相关和上下文感知的查询建议。此外,该系统可帮助用户将查询历史和结果组织成仪表板以传达发现的数据洞察力。通过比较用户学习,我们表明我们的系统可以促进比没有推荐模块的基线更有效和系统的数据分析过程。
translated by 谷歌翻译
当系统的全面了解时然而,这种技术在灰盒设置中行动不成功,攻击者面部模板未知。在这项工作中,我们提出了一种具有新开发的目标函数的相似性的灰度逆势攻击(SGADV)技术。 SGAdv利用不同的评分来产生优化的对抗性实例,即基于相似性的对抗性攻击。这种技术适用于白盒和灰度箱攻击,针对使用不同分数确定真实或调用用户的身份验证系统。为了验证SGAdv的有效性,我们对LFW,Celeba和Celeba-HQ的面部数据集进行了广泛的实验,反对白盒和灰度箱设置的面部和洞察面的深脸识别模型。结果表明,所提出的方法显着优于灰色盒设置中的现有的对抗性攻击技术。因此,我们总结了开发对抗性示例的相似性基础方法可以令人满意地迎合去认证的灰度箱攻击场景。
translated by 谷歌翻译
虽然基于点的网络被证明是3D点云建模的准确性,但它们仍然落在3D检测中基于体素的竞争对手后面。我们观察到,用于下采样点的主要集合抽象设计可以保持太多的不重要背景信息,可以影响检测对象的特征学习。为了解决这个问题,我们提出了一种名为语义增强集抽象(SASA)的新型集抽象方法。从技术上讲,我们首先将二进制分段模块添加为侧面输出,以帮助识别前景点。基于估计的点亮前景分数,我们提出了一种语义引导的点采样算法,帮助在下采样期间保持更重要的前景点。在实践中,SASA显示有效地识别与前景对象相关的有价值的点,并改善基于点的3D检测特征学习。此外,它是一种易于插入式模块,能够提升各种基于点的探测器,包括单级和两级的探测器。对流行的基蒂和NUSCENES数据集的广泛实验验证了SASA的优越性,提升基于点的检测模型,以达到最先进的基于体素的方法。
translated by 谷歌翻译
零拍学习(ZSL)旨在将分类能力转移到看不见的课程。最近的方法证明,泛化和专业化是在ZSL中实现良好性能的两个基本能力。然而,它们只关注一个能力,导致模型,这些模型太过普遍,具有劣化的分类能力或专注于概括到看不见的课程。在本文中,我们提出了一种端到端网络,具有平衡的泛化和专业化能力,称为BGSNet,利用两种能力,并在实例和数据集级别平衡它们。具体而言,BGSNet由两个分支组成:泛化网络(GNET),它应用epiSodic元学习学习广义知识,以及平衡专业化网络(BSNet),它采用多个细心提取器来提取歧视特征并满足实例级别平衡。一种新颖的自调整分集损失旨在优化具有较少冗余和更多样性的BSNet。我们进一步提出了可分辨性的数据集级别平衡并更新线性退火调度中的权重,以模拟网络修剪,从而以低成本获得BSNet的最佳结构,并且实现了数据集级平衡。四个基准数据集的实验展示了我们模型的效果。足够的组分消融证明了整合泛化和专业能力的必要性。
translated by 谷歌翻译
反馈线性化是一种用于控制倾斜转子的流行控制方法。尽管该方法带来了利用系统过度致动的性能的机会,但典型的结果表明倾斜角度的大变化,这在实际情况下不期望。为了解决这个问题,我们介绍了新颖的概念UAV步态来限制倾斜角度。步态计划问题最初是为了解决四肢(四足腿)机器人的控制问题。在移植这种方法的同时,伴随着反馈线性化方法,在倾斜转子可能导致解耦矩阵中的众所周知的非可逆问题。在这项研究中,我们探讨了倾斜转子的可逆步态,并应用反馈线性化以稳定姿态和高度。结果在Simulink,Matlab中验证。
translated by 谷歌翻译
空中接入网络已被识别为各种事物互联网(物联网)服务和应用程序的重要驾驶员。特别是,以无人机互联网为中心的空中计算网络基础设施已经掀起了自动图像识别的新革命。这种新兴技术依赖于共享地面真理标记的无人机(UAV)群之间的数据,以培训高质量的自动图像识别模型。但是,这种方法将带来数据隐私和数据可用性挑战。为了解决这些问题,我们首先向一个半监督的联邦学习(SSFL)框架提供隐私保留的UAV图像识别。具体而言,我们提出了模型参数混合策略,以改善两个现实场景下的FL和半监督学习方法的天真组合(标签 - 客户端和标签 - 服务器),其被称为联合混合(FEDMIX)。此外,在不同环境中使用不同的相机模块,在不同环境中使用不同的相机模块,在不同的相机模块,即统计异质性,存在显着差异。为了减轻统计异质性问题,我们提出了基于客户参与训练的频率的聚合规则,即FedFReq聚合规则,可以根据其频率调整相应的本地模型的权重。数值结果表明,我们提出的方法的性能明显优于当前基线的性能,并且对不同的非IID等级的客户数据具有强大。
translated by 谷歌翻译
本文解决了颞句的接地。以前的作品通常通过学习帧级视频功能来解决此任务并将其与文本信息对齐。这些作品的一个主要限制是,由于帧级特征提取,它们未能利用具有微妙的外观差异的模糊视频帧。最近,一些方法采用更快的R-CNN来提取每帧中的详细物体特征来区分细粒的外观相似性。然而,由于对象检测模型缺乏时间建模,因此通过更快的R-CNN提取的对象级别特征遭受缺失的运动分析。为了解决这个问题,我们提出了一种新颖的运动外观推理网络(MARN),其包括动作感知和外观感知对象特征,以更好的原因对象关系来建立连续帧之间的活动。具体而言,我们首先介绍两个单独的视频编码器以将视频嵌入到相应的主导和外观 - 方面对象表示中。然后,我们开发单独的运动和外观分支,以分别学习运动引导和外观引导的对象关系。最后,来自两个分支的运动和外观信息都与用于最终接地的更多代表性的特征相关联。对两个具有挑战性的数据集(Chardes-Sta和Tacos)的广泛实验表明,我们提出的马恩在以前的最先进的方法中大大优于大幅度。
translated by 谷歌翻译