最近,已广泛研究了基于深度学习的方法,以进行可变形的图像注册任务。但是,大多数努力将复合图像表示形式直接映射到通过卷积神经网络的空间转换,而忽略了其捕获空间对应关系的有限能力。另一方面,变压器可以更好地表征与注意机制的空间关系,其远程依赖性可能对注册任务有害,在这种情况下,距离太大的体素不太可能是相应的对。在这项研究中,我们提出了一个新型的变形器模块,以及用于可变形图像配准任务的多尺度框架。变形器模块旨在通过将位移矢量预测作为几个碱基的加权总和来促进从图像表示到空间转换的映射。借助多尺度框架以粗略的方式预测位移字段,与传统和基于学习的方法相比,可以实现卓越的性能。进行了两个公共数据集的全面实验,以证明所提出的变形器模块以及多规模框架的有效性。
translated by 谷歌翻译
最近,动物姿势估计引起了关注动物行为理解的学术界(例如野生动植物和保护生物学)的兴趣。但是,目前的动物姿势估计遭受了小数据集和较大的数据差异,因此很难获得稳健的性能。为了解决这个问题,我们建议可以利用语言模型学到的与姿势相关语义之间的关系的丰富知识来改善动物姿势估计。因此,在这项研究中,我们介绍了一个新颖的促进框架,以有效地采用语言模型,以更好地根据及时训练来理解动物姿势。在Promptpose中,我们建议将语言知识适应视觉动物的姿势是实现有效动物姿势估计的关键。为此,我们首先介绍文本提示,以在文本语义描述和支持动物关键点功能之间建立连接。此外,我们进一步设计了一个像素级的对比损失,以在文本描述和本地图像特征之间建立密集的联系,以及语义级别的对比损失,以弥合语言图像跨模式预训练的全球对比度之间的差距密集预测中的局部对比。在实践中,Pickerpose在改善动物姿势估计方面显示出巨大的好处。通过进行广泛的实验,我们表明,我们的及时疾病在监督和少量设置下取得了卓越的性能,超过了代表性的方法。源代码和模型将公开可用。
translated by 谷歌翻译
最近,深度神经网络具有极大的高级无效磁共振图像(MRI)重建,其中大多数研究都遵循单个解剖学中的一个网络时尚,即每个专家网络都经过训练和评估特定解剖结构。除了培训多个独立模型的效率低下之外,此类公约还忽略了各种解剖学的共享脱张知识,这些知识可以彼此受益。为了探索共享知识,一种天真的方法是将来自各种解剖学的所有数据结合起来,以训练全能网络。不幸的是,尽管存在共同的脱氧知识,但我们透露,不同解剖学的独家知识可能会恶化特定的重建目标,从而导致整体绩效降低。在这项研究中观察到这一点,我们提出了一个新型的深MRI重建框架,并具有解剖结构和解剖学特异性的参数化学习者,旨在“寻求共同点,同时解决不同的解剖学差异”。尤其是主要的解剖学共享的学习者是暴露于不同的解剖学上,以模拟蓬勃发展的共同知识,而有效的解剖学特异性学习者则接受了目标解剖结构的培训,以进行独家知识。在两个MRI重建网络中,在我们的框架顶部介绍并探索了四个不同的解剖学学习者实现。关于大脑,膝盖和心脏MRI数据集的全面实验表明,其中三个学习者能够通过多种解剖学协作学习来增强重建性能。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
发言人识别系统(SRSS)最近被证明容易受到对抗攻击的影响,从而引发了重大的安全问题。在这项工作中,我们系统地研究了基于确保SRSS的基于对抗性训练的防御。根据SRSS的特征,我们提出了22种不同的转换,并使用扬声器识别的7种最新有前途的对抗攻击(4个白盒和3个Black-Box)对其进行了彻底评估。仔细考虑了国防评估中的最佳实践,我们分析了转换的强度以承受适应性攻击。我们还评估并理解它们与对抗训练相结合的自适应攻击的有效性。我们的研究提供了许多有用的见解和发现,其中许多与图像和语音识别域中的结论是新的或不一致的,例如,可变和恒定的比特率语音压缩具有不同的性能,并且某些不可差的转换仍然有效地抗衡。当前有希望的逃避技术通常在图像域中很好地工作。我们证明,与完整的白色盒子设置中的唯一对抗性训练相比,提出的新型功能级转换与对抗训练相比是相当有效的,例如,将准确性提高了13.62%,而攻击成本则达到了两个数量级,而其他攻击成本则增加了。转型不一定会提高整体防御能力。这项工作进一步阐明了该领域的研究方向。我们还发布了我们的评估平台SpeakerGuard,以促进进一步的研究。
translated by 谷歌翻译
最近的工作阐明了说话者识别系统(SRSS)针对对抗性攻击的脆弱性,从而在部署SRSS时引起了严重的安全问题。但是,他们仅考虑了一些设置(例如,来源和目标扬声器的某些组合),仅在现实世界攻击方案中留下了许多有趣而重要的环境。在这项工作中,我们介绍了AS2T,这是该域中的第一次攻击,该域涵盖了所有设置,因此,对手可以使用任意源和目标扬声器来制作对抗性声音,并执行三个主要识别任务中的任何一种。由于现有的损失功能都不能应用于所有设置,因此我们探索了每种设置的许多候选损失功能,包括现有和新设计的损失功能。我们彻底评估了它们的功效,并发现某些现有的损失功能是次优的。然后,为了提高AS2T对实用的无线攻击的鲁棒性,我们研究了可能发生的扭曲发生在空中传输中,利用具有不同参数的不同转换功能来对这些扭曲进行建模,并将其整合到生成中对手的声音。我们的模拟无线评估验证了解决方案在产生强大的对抗声音方面的有效性,这些声音在各种硬件设备和各种声音环境下保持有效,具有不同的混响,环境噪声和噪声水平。最后,我们利用AS2T来执行迄今为止最大的评估,以了解14个不同SRSS之间的可转移性。可传递性分析提供了许多有趣且有用的见解,这些见解挑战了图像域中先前作品中得出的几个发现和结论。我们的研究还阐明了说话者识别域中对抗攻击的未来方向。
translated by 谷歌翻译
流量预测是智能交通系统中时空学习任务的规范示例。现有方法在图形卷积神经操作员中使用预定的矩阵捕获空间依赖性。但是,显式的图形结构损失了节点之间关系的一些隐藏表示形式。此外,传统的图形卷积神经操作员无法在图上汇总远程节点。为了克服这些限制,我们提出了一个新型的网络,空间 - 周期性自适应图卷积,并通过注意力网络(Staan)进行交通预测。首先,我们采用自适应依赖性矩阵,而不是在GCN处理过程中使用预定义的矩阵来推断节点之间的相互依存关系。其次,我们集成了基于图形注意力网络的PW注意,该图形是为全局依赖性设计的,而GCN作为空间块。更重要的是,在我们的时间块中采用了堆叠的散布的1D卷积,具有长期预测的效率,用于捕获不同的时间序列。我们在两个现实世界数据集上评估了我们的Staan,并且实验验证了我们的模型优于最先进的基线。
translated by 谷歌翻译
深度图用于从3D渲染到2D图像效应(例如散景)的广泛应用。但是,单个图像深度估计(侧)模型预测的人通常无法捕获对象中的孤立孔和/或具有不准确的边界区域。同时,使用商业自动掩蔽工具或现成的分割和垫子的方法,甚至是通过手动编辑,使用商业自动掩盖工具或现成的方法更容易获得。因此,在本文中,我们提出了一个新的掩盖引导深度细化的问题,该问题利用通用掩模来完善侧面模型的深度预测。我们的框架执行了分层的细化和介入/架设,将深度图分解为两个由掩码和倒置面罩表示的单独的层。由于具有深度和掩码注释的数据集很少,因此我们提出了一种使用任意掩码和RGB-D数据集的自我监督学习方案。我们从经验上表明,我们的方法对不同类型的掩模和初始深度预测具有鲁棒性,可以准确地完善内部和外掩模边界区域的深度值。我们通过消融研究进一步分析了我们的模型,并证明了实际应用的结果。可以在https://sooyekim.github.io/maskdepth/上找到更多信息。
translated by 谷歌翻译
机器人需要多种互动模式来与人类在复杂的工业任务中进行稳健合作。我们开发了共存和共存(可可)人类机器人协作系统。共存模式使机器人能够在共享空间中独立地与人类在不同子任务上合作。合作模式使机器人能够遵循人类的指导并恢复失败。人类意图跟踪算法将人类和机器人运动测量作为输入,并提供了交互模式的开关。我们证明了可可系统在用例中类似于现实世界多步组件任务的有效性。
translated by 谷歌翻译
为了跟踪视频中的目标,当前的视觉跟踪器通常采用贪婪搜索每个帧中目标对象定位,也就是说,将选择最大响应分数的候选区域作为每个帧的跟踪结果。但是,我们发现这可能不是一个最佳选择,尤其是在遇到挑战性的跟踪方案(例如重闭塞和快速运动)时。为了解决这个问题,我们建议维护多个跟踪轨迹并将光束搜索策略应用于视觉跟踪,以便可以识别出更少的累积错误的轨迹。因此,本文介绍了一种新型的基于梁搜索策略的新型多代理增强学习策略,称为横梁。它主要是受图像字幕任务的启发,该任务将图像作为输入,并使用Beam搜索算法生成多种描述。因此,我们通过多个并行决策过程来将跟踪提出作为样本选择问题,每个过程旨在将一个样本作为每个帧的跟踪结果选择。每个维护的轨迹都与代理商相关联,以执行决策并确定应采取哪些操作来更新相关信息。处理所有帧时,我们将最大累积分数作为跟踪结果选择轨迹。在七个流行的跟踪基准数据集上进行了广泛的实验证实了所提出的算法的有效性。
translated by 谷歌翻译