与大脑变化相关的阿尔茨海默氏病(AD)和轻度认知障碍(MCI)的评估仍然是一项艰巨的任务。最近的研究表明,多模式成像技术的组合可以更好地反映病理特征,并有助于更准确地诊断AD和MCI。在本文中,我们提出了一种新型的基于张量的多模式特征选择和回归方法,用于诊断和生物标志物对正常对照组的AD和MCI鉴定。具体而言,我们利用张量结构来利用多模式数据中固有的高级相关信息,并研究多线性回归模型中的张量级稀疏性。我们使用三种成像方式(VBM- MRI,FDG-PET和AV45-PET)具有疾病严重程度和认知评分的临床参数来分析ADNI数据的方法的实际优势。实验结果表明,我们提出的方法与疾病诊断的最新方法的优越性能以及疾病特异性区域和与模态相关的差异的鉴定。这项工作的代码可在https://github.com/junfish/bios22上公开获得。
translated by 谷歌翻译
The image recapture attack is an effective image manipulation method to erase certain forensic traces, and when targeting on personal document images, it poses a great threat to the security of e-commerce and other web applications. Considering the current learning-based methods suffer from serious overfitting problem, in this paper, we propose a novel two-branch deep neural network by mining better generalized recapture artifacts with a designed frequency filter bank and multi-scale cross-attention fusion module. In the extensive experiment, we show that our method can achieve better generalization capability compared with state-of-the-art techniques on different scenarios.
translated by 谷歌翻译
The emergence of low-cost, small form factor and light-weight solid-state LiDAR sensors have brought new opportunities for autonomous unmanned aerial vehicles (UAVs) by advancing navigation safety and computation efficiency. Yet the successful developments of LiDAR-based UAVs must rely on extensive simulations. Existing simulators can hardly perform simulations of real-world environments due to the requirements of dense mesh maps that are difficult to obtain. In this paper, we develop a point-realistic simulator of real-world scenes for LiDAR-based UAVs. The key idea is the underlying point rendering method, where we construct a depth image directly from the point cloud map and interpolate it to obtain realistic LiDAR point measurements. Our developed simulator is able to run on a light-weight computing platform and supports the simulation of LiDARs with different resolution and scanning patterns, dynamic obstacles, and multi-UAV systems. Developed in the ROS framework, the simulator can easily communicate with other key modules of an autonomous robot, such as perception, state estimation, planning, and control. Finally, the simulator provides 10 high-resolution point cloud maps of various real-world environments, including forests of different densities, historic building, office, parking garage, and various complex indoor environments. These realistic maps provide diverse testing scenarios for an autonomous UAV. Evaluation results show that the developed simulator achieves superior performance in terms of time and memory consumption against Gazebo and that the simulated UAV flights highly match the actual one in real-world environments. We believe such a point-realistic and light-weight simulator is crucial to bridge the gap between UAV simulation and experiments and will significantly facilitate the research of LiDAR-based autonomous UAVs in the future.
translated by 谷歌翻译
Recently, flow-based frame interpolation methods have achieved great success by first modeling optical flow between target and input frames, and then building synthesis network for target frame generation. However, above cascaded architecture can lead to large model size and inference delay, hindering them from mobile and real-time applications. To solve this problem, we propose a novel Progressive Motion Context Refine Network (PMCRNet) to predict motion fields and image context jointly for higher efficiency. Different from others that directly synthesize target frame from deep feature, we explore to simplify frame interpolation task by borrowing existing texture from adjacent input frames, which means that decoder in each pyramid level of our PMCRNet only needs to update easier intermediate optical flow, occlusion merge mask and image residual. Moreover, we introduce a new annealed multi-scale reconstruction loss to better guide the learning process of this efficient PMCRNet. Experiments on multiple benchmarks show that proposed approaches not only achieve favorable quantitative and qualitative results but also reduces current model size and running time significantly.
translated by 谷歌翻译
Recent works have shown that optical flow can be learned by deep networks from unlabelled image pairs based on brightness constancy assumption and smoothness prior. Current approaches additionally impose an augmentation regularization term for continual self-supervision, which has been proved to be effective on difficult matching regions. However, this method also amplify the inevitable mismatch in unsupervised setting, blocking the learning process towards optimal solution. To break the dilemma, we propose a novel mutual distillation framework to transfer reliable knowledge back and forth between the teacher and student networks for alternate improvement. Concretely, taking estimation of off-the-shelf unsupervised approach as pseudo labels, our insight locates at defining a confidence selection mechanism to extract relative good matches, and then add diverse data augmentation for distilling adequate and reliable knowledge from teacher to student. Thanks to the decouple nature of our method, we can choose a stronger student architecture for sufficient learning. Finally, better student prediction is adopted to transfer knowledge back to the efficient teacher without additional costs in real deployment. Rather than formulating it as a supervised task, we find that introducing an extra unsupervised term for multi-target learning achieves best final results. Extensive experiments show that our approach, termed MDFlow, achieves state-of-the-art real-time accuracy and generalization ability on challenging benchmarks. Code is available at https://github.com/ltkong218/MDFlow.
translated by 谷歌翻译
Scene text images have different shapes and are subjected to various distortions, e.g. perspective distortions. To handle these challenges, the state-of-the-art methods rely on a rectification network, which is connected to the text recognition network. They form a linear pipeline which uses text rectification on all input images, even for images that can be recognized without it. Undoubtedly, the rectification network improves the overall text recognition performance. However, in some cases, the rectification network generates unnecessary distortions on images, resulting in incorrect predictions in images that would have otherwise been correct without it. In order to alleviate the unnecessary distortions, the portmanteauing of features is proposed. The portmanteau feature, inspired by the portmanteau word, is a feature containing information from both the original text image and the rectified image. To generate the portmanteau feature, a non-linear input pipeline with a block matrix initialization is presented. In this work, the transformer is chosen as the recognition network due to its utilization of attention and inherent parallelism, which can effectively handle the portmanteau feature. The proposed method is examined on 6 benchmarks and compared with 13 state-of-the-art methods. The experimental results show that the proposed method outperforms the state-of-the-art methods on various of the benchmarks.
translated by 谷歌翻译
Scene text recognition (STR) involves the task of reading text in cropped images of natural scenes. Conventional models in STR employ convolutional neural network (CNN) followed by recurrent neural network in an encoder-decoder framework. In recent times, the transformer architecture is being widely adopted in STR as it shows strong capability in capturing long-term dependency which appears to be prominent in scene text images. Many researchers utilized transformer as part of a hybrid CNN-transformer encoder, often followed by a transformer decoder. However, such methods only make use of the long-term dependency mid-way through the encoding process. Although the vision transformer (ViT) is able to capture such dependency at an early stage, its utilization remains largely unexploited in STR. This work proposes the use of a transformer-only model as a simple baseline which outperforms hybrid CNN-transformer models. Furthermore, two key areas for improvement were identified. Firstly, the first decoded character has the lowest prediction accuracy. Secondly, images of different original aspect ratios react differently to the patch resolutions while ViT only employ one fixed patch resolution. To explore these areas, Pure Transformer with Integrated Experts (PTIE) is proposed. PTIE is a transformer model that can process multiple patch resolutions and decode in both the original and reverse character orders. It is examined on 7 commonly used benchmarks and compared with over 20 state-of-the-art methods. The experimental results show that the proposed method outperforms them and obtains state-of-the-art results in most benchmarks.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The runtime of the resulting models was evaluated on the Snapdragon's 8 Gen 1 GPU that provides excellent acceleration results for the majority of common deep learning ops. The proposed solutions are compatible with all recent mobile GPUs, being able to process Full HD photos in less than 20-50 milliseconds while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper.
translated by 谷歌翻译
Binaural rendering of ambisonic signals is of broad interest to virtual reality and immersive media. Conventional methods often require manually measured Head-Related Transfer Functions (HRTFs). To address this issue, we collect a paired ambisonic-binaural dataset and propose a deep learning framework in an end-to-end manner. Experimental results show that neural networks outperform the conventional method in objective metrics and achieve comparable subjective metrics. To validate the proposed framework, we experimentally explore different settings of the input features, model structures, output features, and loss functions. Our proposed system achieves an SDR of 7.32 and MOSs of 3.83, 3.58, 3.87, 3.58 in quality, timbre, localization, and immersion dimensions.
translated by 谷歌翻译