知识图(kg)嵌入是一种主流方法,用于推理不完整的kg。但是,受其固有浅层和静态体系结构的限制,它们几乎无法处理对复杂逻辑查询的不断上升,这些查询包括逻辑运算符,估算的边缘,多个源实体和未知的中间实体。在这项工作中,我们通过掩盖的预训练和微调策略介绍了知识图变压器(kgtransformer)。我们设计了一种kg三重变换方法,以使变压器能够处理kg,这是通过稀疏(MOE)稀疏激活的混合物进一步增强的。然后,我们将复杂的逻辑查询作为掩盖预测提出,并引入了两阶段掩盖的预训练策略,以提高可转移性和概括性。在两个基准上进行的广泛实验表明,KGTRANSFORMER可以始终超过基于KG的基准和九个内域和室外推理任务的高级编码。此外,KGTRANSFORMER可以通过提供解释给定答案的完整推理路径来解释性。
translated by 谷歌翻译