真实图像进入样式中的潜在空间是一个研究的问题。然而,由于重建和可编辑性之间的固有权衡,将现有的现实情景方法应用于现实世界的情况仍然是一个开放的挑战:可以准确代表真实图像的潜在空间区域通常遭受降级的语义控制。最近的工作提出通过微调发电机将目标图像添加到潜在空间的良好编辑区域来减轻此权衡。在有希望的同时,这种微调方案对于普遍使用而言是不切实际的,因为它需要每个新图像需要冗长的训练阶段。在这项工作中,我们将这种方法介绍到基于编码器的反演的领域。我们提出了一个HyperSTYLE,一个高度作品,用于学习调制Stylegan权重,以忠实地在潜在空间的可编辑区域中表达给定的图像。一个天真的调制方法需要培训超过30亿参数的高度工作。通过仔细的网络设计,我们将其降低到与现有的编码器一致。 Hyperstyle产生与具有编码器的近实时推理能力的优化技术相当的重建。最后,我们展示了超出了超出了反转任务的若干应用的效力,包括编辑域名域名的域外图像。
translated by 谷歌翻译
贝叶斯网络是一组$ N $随机变量的定向非循环图(DAG)(用顶点标识);贝叶斯网络分布(BND)是RV的概率分布,即在图中是马尔可夫的。这种模型的有限混合物是在较大的图表上对这些变量的投影,其具有额外的“隐藏”(或“隐藏”(或“潜伏”)随机变量$ U $,范围在$ \ {1,\ ldots,k \ $,以及从$ U $到其他每个其他顶点的指示边。这种类型的模型是对因因果推理的基础,其中$ U $模型是一种混杂效果。一个非常特殊的案例一直是在理论文学中的长期兴趣:空图。这种分布只是$ k $产品分布的混合。考虑到k $产品分布的混合物的联合分布,以识别产物分布及其混合重量,这一直是长期的问题。我们的结果是:(1)我们改善了从$ \ exp(o(k ^ 2))$到$ \ exp(o(k \ log k)的$ k $产品分布的混合物的示例复杂性(和运行时) )$。鉴于已知的$ \ exp(\ omega(k))$下限,这几乎可以最好。 (2)我们为非空图表提供了第一算法。最大程度为$ \ delta $的图表的复杂性为$ \ exp(o(k(\ delta ^ 2 + \ log k)))$。 (上述复杂性是近似和抑制辅助参数的依赖性。)
translated by 谷歌翻译
在这项工作中,我们建立了对砂桩镶嵌的不均匀区域的解说中的自治控制的启发式和学习策略。我们将问题正式化为马尔可夫决策过程,设计了一个演示了代理环境交互的模拟,最后将我们的模拟器与真正的Dozer原型进行了比较。我们使用钢筋学习,行为克隆和对比学习的方法来培训混合政策。我们的培训代理AGPNET达到人力级性能,优于自主分级任务的当前最先进的机器学习方法。此外,我们的代理能够从随机情景中推广到看不见的世界问题。
translated by 谷歌翻译
数据驱动算法,特别是神经网络,可以在高分辨率模拟数据训练时模拟粗辨率气候模型中未解决的过程的影响;然而,当在没有接受培训的条件下评估时,它们通常会进行大规模的概括误差。在这里,我们建议在物理上重新归类机器学习算法的输入和输出,以帮助他们推广到看不见的气候。在三个不同的气候模型中应用了划分级热力学的离线参数化,我们展示了重新划分的或“气候不变”神经网络,使测试气候的准确预测比其培训气候更温暖。此外,“气候不变”神经网络促进了Aquaplanet和地球模拟之间的泛化。通过可视化和归因方法,我们表明与标准机器学习模型相比,“气候不变”算法学到了风暴规模对流,辐射和其天气热力学环境之间的更多地方和强大的关系。总的来说,这些结果表明,将物理知识纳入地球系统过程的数据驱动模型可以提高其在气候制度上概括的一致性和能力。
translated by 谷歌翻译
肌肉驱动控制是跨越不同领域的兴趣的研究课题,特别是生物力学,机器人和图形。这种类型的控制尤其具有挑战性,因为模型通常是过度的,并且动态被延迟和非线性。然而,这是一个非常良好的测试和调整的致动模型,该模型经历了数百万年的演变,并且涉及有趣的性质利用肌肉肌腱单元的被动力和有效的能量存储和释放。为了促进肌肉致动模拟研究,我们基于Mujoco模拟器释放鸵鸟的3D肌肉骨骼模拟。 Ostriches是地球上最快的搭配之一,因此是研究肌肉驱动的双模运动的优秀模型。该模型基于CT扫描和解剖,用于收集诸如插入位点,长度和钢圈角度的实际肌肉数据。除此之外,我们还提供一组加强学习任务,包括参考运动跟踪和颈部的达到任务。参考运动数据基于我们预处理和适应我们模型的各种行为的运动捕获剪辑。本文介绍了如何使用任务构建和迭代地改进模型。通过将它们与从机车鸟类的实验收集的电拍摄数据进行比较来评估肌肉致动模式的准确性。我们认为,这项工作可以是生物力学,强化学习,图形和机器人社区之间的有用桥梁,通过提供快速且易于使用的模拟。
translated by 谷歌翻译
我们介绍了神经点光场,它用稀疏点云上的轻场隐含地表示场景。结合可分辨率的体积渲染与学习的隐式密度表示使得可以合成用于小型场景的新颖视图的照片现实图像。作为神经体积渲染方法需要潜在的功能场景表示的浓密采样,在沿着射线穿过体积的数百个样本,它们从根本上限制在具有投影到数百个训练视图的相同对象的小场景。向神经隐式光线推广稀疏点云允许我们有效地表示每个光线的单个隐式采样操作。这些点光场作为光线方向和局部点特征邻域的函数,允许我们在没有密集的物体覆盖和视差的情况下插入光场条件训练图像。我们评估大型驾驶场景的新型视图综合的提出方法,在那里我们综合了现实的看法,即现有的隐式方法未能代表。我们验证了神经点光场可以通过显式建模场景来实现沿着先前轨迹的视频来预测沿着看不见的轨迹的视频。
translated by 谷歌翻译
基于深度学习的面部识别(FR)模型在过去几年中表现出最先进的性能,即使在佩戴防护医疗面罩时,面膜在Covid-19大流行期间变得普遍。鉴于这些模型的出色表现,机器学习研究界已经表明对挑战其稳健性越来越令人兴趣。最初,研究人员在数字域中呈现了对抗性攻击,后来将攻击转移到物理领域。然而,在许多情况下,物理领域的攻击是显眼的,例如,需要在脸上放置贴纸,因此可能会在真实环境中引起怀疑(例如,机场)。在本文中,我们提出了对伪装在面部面罩的最先进的FR模型的身体对抗性掩模,以仔细制作的图案的形式施加在面部面具上。在我们的实验中,我们检查了我们的对抗掩码对广泛的FR模型架构和数据集的可转移性。此外,我们通过在织物医疗面罩上印刷对抗性模式来验证了我们的对抗性面膜效果,使FR系统仅识别穿面膜的3.34%的参与者(相比最低83.34%其他评估的面具)。
translated by 谷歌翻译
可解释性正在成为一个活跃的研究主题,因为机器学习(ML)模型更广泛地用于做出关键决策。表格数据是不同应用中最常用的数据模式之一,如医疗保健和金融。用于表格数据的大部分现有的解释性方法仅报告功能 - 重要性分数 - 或者每个示例)或全局(每种型号) - 但它们不提供特征如何交互的解释或可视化。我们通过引入特征向量来解决此限制,这是一种为表格数据集设计的新的全局解释性方法。除了提供功能重要性之外,特征向量通过直观的特征可视化技术发现特征之间的固有语义关系。我们的系统实验通过将其应用于几个现实世界数据集来证明这种新方法的经验效用。我们还提供了一种用于特征向量的易于使用的Python包。
translated by 谷歌翻译
谷歌的运营洪水预测系统是制定的,为机构和公众提供准确的实时洪水警告,重点是河流洪水在大型潮流的河流中。它在2018年开始运作,自从地理位置扩展以来。该预测系统由四个子系统组成:数据验证,阶段预测,淹没建模和警报分配。机器学习用于两个子系统。阶段预测采用长短期内存(LSTM)网络和线性模型进行建模。使用阈值和歧管模型计算洪水淹没,前者计算淹没程度,后者计算淹没程度和深度。本文首次提供的歧管模型提供了一种机器学习替代洪水淹没的液压建模。在评估历史数据时,所有型号都可以实现可操作使用的足够高的度量指标。 LSTM表现出比线性模型更高的技能,而阈值和歧管模型达到了类似的性能度量,以便在淹没程度上进行建模。在2021年的季风季节期间,洪水预警系统在印度和孟加拉国运营,覆盖河流的洪水区,总面积287,000平方公里,拥有350多万人。超过100米的洪水警报被发送给受影响的人口,相关当局以及紧急组织。系统上的当前和未来的工作包括将覆盖范围扩展到额外的洪水易发位置,以及提高建模能力和准确性。
translated by 谷歌翻译
通过潜在树形图形模型建模高维数据的分布是多个科学域中的一种普遍存在的方法。常见的任务是推断底层树结构,仅给出其终端节点的观察。树恢复的许多算法是计算密集型的,这将其适用于中等大小的树木。对于大树,一种共同的方法,被称为剥夺和征服,是以两步恢复树结构。首先,将结构分别恢复终端节点的多个可能随机子集。其次,合并生成的子树以形成一棵树。在这里,我们开发频谱自上而下的恢复(STDR),确定性分割和征服方法来推断出大潜在树模型。与以前的方法不同,STDR基于与观察到的节点相关的合适的LAPLACIAN矩阵的FIEDLER向量,以非随机方式分配终端节点。我们证明,在某些条件下,这种分区与树结构一致。反过来,这导致了小远子的显着更简单的合并程序。我们证明了STDR在统计上是一致的,并绑定了以高概率准确恢复树所需的样本数量。使用来自近几种常见树模型的模拟数据在系统发育中,我们证明STDR在运行时具有显着的优势,具有改善或类似的准确性。
translated by 谷歌翻译