本文讨论了具有丰富记录数据的域中的政策选择问题,但互动预算有限。解决此问题将在行业,机器人和推荐领域中安全评估和部署离线强化学习政策等。已经提出了几种违规评估(OPE)技术以评估仅使用记录数据的策略的值。然而,OPE的评估与真实环境中的完整在线评估之间仍然存在巨大差距。然而,在实践中通常不可能进行大量的在线互动。为了克服这个问题,我们介绍了\ emph {主动脱机策略选择} - 一种新的顺序决策方法,将记录数据与在线交互相结合,以识别最佳策略。这种方法使用ope估计来热启动在线评估。然后,为了利用有限的环境相互作用,我们决定基于具有表示政策相似性的内核函数的贝叶斯优化方法来评估哪个策略。我们使用大量候选政策的多个基准,以表明所提出的方法提高了最先进的OPE估计和纯在线策略评估。
translated by 谷歌翻译
元学习在有限的监督数据中表现出了几次学习的巨大成功。在这些设置中,元模型通常被过度参数化。尽管常规的统计学习理论表明,过度参数化的模型倾向于过度合适,但经验证据表明,过度参数化的元学习方法仍然很好地工作 - 这种现象通常称为``良性过度拟合''。我们了解这种现象,我们专注于元学习设置,我们将具有挑战性的嵌套结构称为嵌套的元学习,并在过度参数化的元学习模型下分析其泛化性能。尽管我们的分析使用了相对可牵引的线性模型,但我们的理论有助于理解数据异质性,模型适应和良性过度适应嵌套元学习任务之间的微妙相互作用。我们通过数值模拟证实了我们的理论主张。
translated by 谷歌翻译
我们在本文中重新审视语义场景(SSC),是预测3D场景的语义和占用表示的有用任务。此任务的许多方法始终基于用于保存本地场景结构的体蛋白化场景表示。然而,由于存在可见空体素,当网络更深时,这些方法总是遭受重型计算冗余,从而限制完成质量。为了解决这种困境,我们提出了我们为此任务的新型点体素聚集网络。首先,我们通过去除这些可见的空体素来将Voxized场景传输到点云,并采用深点流,以有效地从场景中捕获语义信息。同时,仅包含两个3D卷积层的轻重体素流保留了体蛋白化场景的局部结构。此外,我们设计一个各向异性体素聚合运算符,将结构细节从体素流融合到点流中,并通过语义标签来增强点流中的上采样过程的语义感知传播模块。我们展示了我们的模型在两个基准上超越了最先进的余量,只有深度图像作为输入。
translated by 谷歌翻译
机械化新鲜市场水果的手工采伐构成了水果产业可持续性的最大挑战之一。在手动收获草莓和桌葡萄等新鲜市场作物时,拾取器花费大量的时间行走,将全托盘携带到领域边缘的收集站。增加对这种作物的收获自动化的一步是部署运输空和全托盘的收获辅助协作机器人(共用机器人),从而通过减少拾取器的非生产步行时间来增加收获效率。这项工作介绍了在商业草莓收获过程中开发合作机器收获援助系统及其评估。在系统的核心上,提示了一种预测随机调度算法,其最小化了预期的非拾取时间,从而最大化了收获效率。在评估实验期间,当机器人到拾取器的比例为1:3时,共同机器人将平均收获效率提高约10%并将平均非生产时间减少60%。在这项工作中开发的概念可以应用于机器人收获艾滋病,用于其他手动收获的作物,这些作物涉及用于行走的作物运输。
translated by 谷歌翻译
汤普森抽样(TS)吸引了对强盗区域的兴趣。它在20世纪30年代介绍,但近年来尚未经过理论上证明。其在组合多武装强盗(CMAB)设置中的所有分析都需要精确的Oracle来提供任何输入的最佳解决方案。然而,这种Oracle通常是不可行的,因为许多组合优化问题是NP - 硬,并且只有近似oracles可用。一个例子(王和陈,2018)已经表明TS的失败来学习近似Oracle。但是,此Oracle罕见,仅用于特定问题实例。它仍然是一个开放的问题,无论TS的收敛分析是否可以扩展到CMAB中的精确oracle。在本文中,我们在贪婪的Oracle下研究了这个问题,这是一个常见的(近似)Oracle,具有理论上的保证来解决许多(离线)组合优化问题。我们提供了一个问题依赖性遗憾的遗憾下限为$ \ omega(\ log t / delta ^ 2)$,以量化Ts的硬度来解决贪婪的甲骨文的CMAB问题,其中$ T $是时间范围和$ Delta $是一些奖励差距。我们还提供几乎匹配的遗憾上限。这些是TS解决CMAB与常见近似甲骨文的第一个理论结果,并打破TS无法使用近似神谕的误解。
translated by 谷歌翻译
开发对手挑战NLP系统的方法是提高模型性能和解释性的有前途的途径。在这里,我们描述了团队在第一个动态对抗数据收集(DADC)的任务1中“长角牛”的方法,该研讨会要求团队手动欺骗一个模型,以挖掘出挖掘的问题回答任务。我们的团队首先结束,模型错误率为62%。我们主张采用系统的,语言知情的方法来制定对抗性问题,并描述了试点实验的结果以及我们的官方提交。
translated by 谷歌翻译
本文介绍了Thuee团队的语音识别系统,用于IARPA Open自动语音识别挑战(OpenASR21),并进行了进一步的实验探索。我们在受限和受约束的训练条件下取得了出色的成果。对于受限的训练条件,我们基于标准混合体系结构构建基本ASR系统。为了减轻摄影库(OOV)的问题,我们使用针对OOV和潜在的新单词的素式至phoneme(G2P)技术扩展了发音词典。采用了标准的声学模型结构,例如CNN-TDNN-F和CNN-TDNN-F-A。此外,还应用了多种数据增强技术。对于约束训练条件,我们使用自我监督的学习框架WAV2VEC2.0。我们在公开可用的预训练XLSR-53的基础上使用连接式时间分类(CTC)标准进行各种微调技术。我们发现,在将WAV2VEC2.0预训练的模型应用于基于编码器的CTC/CTC/COATION ASR体系结构时,前端特征提取器在将WAV2VEC2.0预训练的模型应用时起着重要作用。通过将目标语言用作为前端功能提取器使用的CTC模型填充可以实现额外的改进。
translated by 谷歌翻译
变压器的注意机制有效地从输入序列中提取相关信息。然而,自我注意力的二次复杂性W.R.T序列长度会产生沉重的计算和记忆负担,尤其是对于长序列的任务。现有的加速器在这些任务中面临性能退化。为此,我们建议Salo为长序列提供杂交稀疏注意机制。Salo包含一个数据调度程序,将混合稀疏注意模式映射到硬件和空间加速器上,以执行有效的注意力计算。我们表明,与GPU和CPU实施相比,Salo平均达到17.66 X和89.33倍的速度,即典型的工作负载,即Longformer和VIL。
translated by 谷歌翻译
通过推断培训数据中的潜在群体,最近的作品将不可用的注释不可用的情况引入不变性学习。通常,在大多数/少数族裔分裂下学习群体不变性在经验上被证明可以有效地改善许多数据集的分布泛化。但是,缺乏这些关于学习不变机制的理论保证。在本文中,我们揭示了在防止分类器依赖于培训集中的虚假相关性的情况下,现有小组不变学习方法的不足。具体来说,我们提出了两个关于判断这种充分性的标准。从理论和经验上讲,我们表明现有方法可以违反标准,因此未能推广出虚假的相关性转移。在此激励的情况下,我们设计了一种新的组不变学习方法,该方法构建具有统计独立性测试的组,并按组标签重新启动样本,以满足标准。关于合成数据和真实数据的实验表明,新方法在推广到虚假相关性转移方面显着优于现有的组不变学习方法。
translated by 谷歌翻译
域的概括通常需要来自多个源域的数据才能进行模型学习。但是,这种强大的假设可能并不总是在实践中成立,尤其是在数据共享高度关注,有时由于隐私问题而高度刺激的医学领域。本文研究了重要但具有挑战性的单个领域概括问题,其中在最坏情况下仅具有一个源域,可以直接概括到不同看不见的目标域。我们提出了一种在医学图像分割中解决此问题的新方法,该方法可以提取并集成了跨域不变的分割的语义形状的先验信息,即使是从单个域数据中也可以很好地捕捉,以促进分布偏移下的分割。此外,进一步设计了具有双偶然性正则化的测试时间适应策略,以促进每个看不见的域下这些形状先验的动态融合,以提高模型的通用性。对两个医学图像分割任务进行的广泛实验证明了我们在各种看不见的领域中的方法的一致改进,以及在最坏情况下,它比最先进的方法相比,它优于最先进的方法。
translated by 谷歌翻译