人和车辆轨迹体现了运输基础设施的重要信息,轨迹相似性计算是许多涉及轨迹数据分析的现实世界应用中的功能。最近,基于深度学习的轨迹相似性技术使得能够提高传统相似性技术提高效率和适应性。然而,现有的轨迹相似度学习提案强调了时间相似性的空间相似性,使得它们次开用于时光分析。为此,我们提出了ST2VEC,这是一种基于轨迹表示的学习架构,其考虑了道路网络中的时空相似度学习的对轨迹对之间的细粒度的空间和时间相关性。据我们所知,这是第一个用于时空轨迹相似性分析的深学习建议。具体而言,ST2VEC包含三个阶段:(i)培训选择代表性培训样本的数据准备; (ii)设计轨迹的空间和时间建模,其中设计了通用时间建模模块(TMM)的轨迹的空间和时间特征; (iii)时空共关节融合(STCF),其中开发了统一的融合(UF)方法,以帮助产生统一的时空轨迹嵌入,以捕获轨迹之间的时空相似关系。此外,由课程概念启发,ST2VEC采用课程学习进行模型优化,以提高融合和有效性。实验研究提供了证据表明,ST2VEC显着胜过了所有最先进的竞争对手,在有效性,效率和可扩展性方面,同时显示出低参数敏感性和良好的模型稳健性。
translated by 谷歌翻译
嘈杂的标签损坏了深网络的性能。为了稳健的学习,突出的两级管道在消除可能的不正确标签和半监督培训之间交替。然而,丢弃观察到的标签的部分可能导致信息丢失,尤其是当腐败不是完全随机的时,例如依赖类或实例依赖。此外,从代表性两级方法Dividemix的训练动态,我们确定了确认偏置的统治:伪标签未能纠正相当大量的嘈杂标签,因此累积误差。为了充分利用观察到的标签和减轻错误的校正,我们提出了强大的标签翻新(鲁棒LR)-a新的混合方法,该方法集成了伪标签和置信度估计技术来翻新嘈杂的标签。我们表明我们的方法成功减轻了标签噪声和确认偏差的损害。结果,它跨数据集和噪声类型实现最先进的结果。例如,强大的LR在真实世界嘈杂的数据集网络VIVION上以前最好的绝对高度提高了4.5%的绝对顶级精度改进。
translated by 谷歌翻译
鉴于大型语言模型的广泛能力,应该有可能朝着一般的文本的助手工作,这些助手与人类价值一致,这意味着它是有帮助,诚实的和无害的。在此方向上的初始遗传,我们研究简单的基线技术和评估,例如提示。我们发现,从模型规模增加适度的干预措施的好处,概括为各种对准评估,并不会损害大型模型的性能。接下来,我们调查与对齐,比较仿制,二进制歧视和排名偏好建模相关的几个培训目标的缩放趋势。我们发现排名优先级模型比模仿学习更好地表现得多,并且通常以模型大小更有利地缩放。相比之下,二进制歧视通常与模仿学习非常类似地执行和缩放。最后,我们研究了一种“偏好模型预训练阶段的培训阶段,其目的是在对人偏好的芬明时提高样本效率。
translated by 谷歌翻译
以前的在线3D多对象跟踪(3DMOT)方法在与几帧的新检测无关时终止ROCKET。但是如果一个物体刚刚变暗,就像被其他物体暂时封闭或者只是从FOV暂时封闭一样,过早地终止ROCKET将导致身份切换。我们揭示了过早的轨迹终端是现代3DMOT系统中身份开关的主要原因。为了解决这个问题,我们提出了一个不朽的跟踪器,一个简单的跟踪系统,它利用轨迹预测来维护对象变暗的物体的轨迹。我们使用一个简单的卡尔曼滤波器进行轨迹预测,并在目标不可见时通过预测保留轨迹。通过这种方法,我们可以避免由过早托管终止产生的96%的车辆标识开关。如果没有任何学习的参数,我们的方法在Waymo Open DataSet测试集上的车载类别的0.0001级和竞争Mota处实现了不匹配的比率。我们的不匹配比率比任何先前发表的方法低一倍。在NUSCENes上报告了类似的结果。我们相信拟议的不朽追踪器可以为推动3DMOT的极限提供简单而强大的解决方案。我们的代码可在https://github.com/immortaltracker/immortaltracker中找到。
translated by 谷歌翻译
从杂乱场景跟踪和重建3D对象是计算机视觉,机器人和自主驾驶系统的关键组件。虽然最近隐含功能的进展(例如,Deepsdf)已经显示出令人鼓舞的高质量3D形状重建结果,但仍然非常具有挑战性,以概括为杂乱和部分可观察的LIDAR数据。在本文中,我们建议利用视频数据的连续性。我们介绍了一种新颖和统一的框架,它利用DeepsDF模型来同时跟踪和重建野外的3D对象。我们在线调整视频中的DeepsDF模型,迭代改善形状重建,同时在返回改进跟踪时,反之亦然。我们试验Waymo和Kitti数据集,并对跟踪和形状重建的最先进方法显着改进。
translated by 谷歌翻译
虽然最先进的传统代表学习(TRL)模型在知识图形完成上显示竞争性能,但实体的嵌入物之间没有参数共享,并且实体之间的连接较弱。因此,提出了基于邻居聚合的表示学习(NARL)模型,其将实体的邻居中的信息编码到其嵌入中。然而,现有的NARL模型只能利用一个跳邻居,忽略多跳邻居中的信息,或者通过分层邻居聚合利用多跳邻居,销毁多跳邻居的完整性。在本文中,我们提出了一个名为RMNA的NARL模型,它通过规则挖掘算法获得和过滤HOWN规则,并使用所选的喇叭规则将有价值的多跳邻居转换为一个跳邻居,因此,有价值的信息中的信息通过聚合这些单跳邻居可以完全利用跳跃邻居。在实验中,我们将RMNA与最先进的TRL模型和NARL型号进行比较。结果表明,RMNA具有竞争性表现。
translated by 谷歌翻译
随着大数据的爆炸性增加,培训机器学习(ML)模型成为计算密集型工作量,需要几天甚至几周。因此,重用已经训练的模型受到了受关注的,称为转移学习。转移学习避免通过将知识从源任务转移到目标任务来避免从头开始培训新模型。现有的传输学习方法主要专注于如何通过特定源模型提高目标任务的性能,并假设给出了源模型。虽然有许多源模型可用,但数据科学家难以手动选择目标任务的最佳源模型。因此,如何在模型数据库中有效地选择合适的源模型进行模型重用是一个有趣但未解决的问题。在本文中,我们提出了SMS,有效,高效,灵活的源模型选择框架。即使源数据集具有明显不同的数据标签,SMS也是有效的,并且灵活地支持具有任何类型的结构的源模型,并且有效地避免任何培训过程。对于每个源模型,SMS首先将目标数据集中的样本加速到软标签中,通过直接将该模型直接应用于目标数据集,然后使用高斯分布适合软标签的集群,最后测量源模型使用的显着能力高斯混合的公制。此外,我们提出了一种改进的SMS(I-SMS),其降低了源模型的输出数量。 I-SMS可以显着降低选择时间,同时保留SMS的选择性能。关于一系列实用模型重用工作负载的广泛实验证明了SMS的有效性和效率。
translated by 谷歌翻译
我们在本文中重新审视语义场景(SSC),是预测3D场景的语义和占用表示的有用任务。此任务的许多方法始终基于用于保存本地场景结构的体蛋白化场景表示。然而,由于存在可见空体素,当网络更深时,这些方法总是遭受重型计算冗余,从而限制完成质量。为了解决这种困境,我们提出了我们为此任务的新型点体素聚集网络。首先,我们通过去除这些可见的空体素来将Voxized场景传输到点云,并采用深点流,以有效地从场景中捕获语义信息。同时,仅包含两个3D卷积层的轻重体素流保留了体蛋白化场景的局部结构。此外,我们设计一个各向异性体素聚合运算符,将结构细节从体素流融合到点流中,并通过语义标签来增强点流中的上采样过程的语义感知传播模块。我们展示了我们的模型在两个基准上超越了最先进的余量,只有深度图像作为输入。
translated by 谷歌翻译
机械化新鲜市场水果的手工采伐构成了水果产业可持续性的最大挑战之一。在手动收获草莓和桌葡萄等新鲜市场作物时,拾取器花费大量的时间行走,将全托盘携带到领域边缘的收集站。增加对这种作物的收获自动化的一步是部署运输空和全托盘的收获辅助协作机器人(共用机器人),从而通过减少拾取器的非生产步行时间来增加收获效率。这项工作介绍了在商业草莓收获过程中开发合作机器收获援助系统及其评估。在系统的核心上,提示了一种预测随机调度算法,其最小化了预期的非拾取时间,从而最大化了收获效率。在评估实验期间,当机器人到拾取器的比例为1:3时,共同机器人将平均收获效率提高约10%并将平均非生产时间减少60%。在这项工作中开发的概念可以应用于机器人收获艾滋病,用于其他手动收获的作物,这些作物涉及用于行走的作物运输。
translated by 谷歌翻译
汤普森抽样(TS)吸引了对强盗区域的兴趣。它在20世纪30年代介绍,但近年来尚未经过理论上证明。其在组合多武装强盗(CMAB)设置中的所有分析都需要精确的Oracle来提供任何输入的最佳解决方案。然而,这种Oracle通常是不可行的,因为许多组合优化问题是NP - 硬,并且只有近似oracles可用。一个例子(王和陈,2018)已经表明TS的失败来学习近似Oracle。但是,此Oracle罕见,仅用于特定问题实例。它仍然是一个开放的问题,无论TS的收敛分析是否可以扩展到CMAB中的精确oracle。在本文中,我们在贪婪的Oracle下研究了这个问题,这是一个常见的(近似)Oracle,具有理论上的保证来解决许多(离线)组合优化问题。我们提供了一个问题依赖性遗憾的遗憾下限为$ \ omega(\ log t / delta ^ 2)$,以量化Ts的硬度来解决贪婪的甲骨文的CMAB问题,其中$ T $是时间范围和$ Delta $是一些奖励差距。我们还提供几乎匹配的遗憾上限。这些是TS解决CMAB与常见近似甲骨文的第一个理论结果,并打破TS无法使用近似神谕的误解。
translated by 谷歌翻译