建议制度,依靠历史观察数据来模仿用户和物品之间的复杂关系,取得了巨大的成功,在现实世界中取得了巨大的成功。选择偏见是现有的现有观测数据基于方法的最重要问题之一,其实际上是由多种类型的不观察室的暴露策略引起的(例如促销和假期效应)。虽然已经提出了各种方法来解决这个问题,但它们主要依赖于隐含的脱叠技术,但没有明确建立未观察的曝光策略。通过明确重建曝光策略(简称休息),我们将推荐问题正式化为反事实推理,并提出了脱叠的社会推荐方法。在休息时,我们假设项目的曝光由潜在曝光策略,用户和项目控制。基于上述生成过程,首先通过识别分析提供我们方法的理论保证。其次,在社交网络和项目的帮助下,我们采用了变分自动编码器来重建潜在的曝光策略。第三,我们通过利用回收的曝光策略制定基于反事实推理的建议算法。四个现实世界数据集的实验,包括三个已发布的数据集和一个私人微信官方帐户数据集,展示了几种最先进的方法的显着改进。
translated by 谷歌翻译
顺序推荐旨在为特定时间戳在特定时间戳提供历史行为中为用户选择最合适的项目。现有方法通常根据像马尔可夫链等转换的方法模拟用户行为序列。然而,这些方法也隐含地假设用户在不考虑用户之间的影响而彼此独立。实际上,这种影响在序列推荐中发挥着重要作用,因为用户的行为容易受其他人的影响。因此,期望聚合用户行为和用户之间的影响,这些用户在时间上演化并涉及用户和项目的异构图。在本文中,我们纳入了动态用户项异构图,提出了一种新的顺序推荐框架。结果,可以考虑历史行为以及用户之间的影响。为此,我们首先将顺序建议形式正式确定估计时间动态异构图和用户行为序列的条件概率的问题。之后,我们利用条件随机字段来聚合异构图形和用户行为以进行概率估计,并采用伪似然方法来得出易行目标函数。最后,我们提供所提出的框架的可扩展和灵活的实现。三个现实世界数据集的实验结果不仅展示了我们所提出的方法的有效性,而且还提供了一些关于顺序推荐的有洞察力的发现。
translated by 谷歌翻译
今天的网络世界难以多变量。在极端品种中收集的指标需要多变量算法以正确检测异常。然而,基于预测的算法,如被广泛证明的方法,通常在数据集中进行次优或不一致。一个关键的常见问题是他们努力成为一个尺寸适合的,但异常在自然中是独特的。我们提出了一种裁定到这种区别的方法。提出FMUAD - 一种基于预测,多方面,无监督的异常检测框架。FMUAD明确,分别捕获异常类型的签名性状 - 空间变化,时间变化和相关变化 - 与独立模块。然后,模块共同学习最佳特征表示,这是非常灵活和直观的,与类别中的大多数其他模型不同。广泛的实验表明我们的FMUAD框架始终如一地优于其他最先进的预测的异常探测器。
translated by 谷歌翻译
排名汇总旨在将许多替代品的偏好排名与不同选民的偏替排名组合成单一共识排名。然而,作为各种实际应用的有用模型,它是一个计算上有挑战性的问题。在本文中,我们提出了一种有效的混合进化排名算法来解决完整和部分排名的排名聚集问题。该算法具有基于协调对的语义交叉,并通过有效的增量评估技术加强了较晚的验收本地搜索。进行实验以评估算法,与最先进的算法相比,表明基准实例上具有高度竞争性能。为了展示其实际有用性,算法应用于标签排名,这是一个重要的机器学习任务。
translated by 谷歌翻译
如今,Multototors正在享受丰富类型的任务中的重要角色。在这些任务期间,进入狭窄的和狭窄的隧道,即人类几乎无法访问,对于多陆来说是非常具有挑战性的。受限制的空间和重要的自我气流扰动在快速和缓慢的飞行速度下诱导控制问题,同时引起国家估计和感知的问题。因此,安全隧道飞行需要适当速度的平滑轨迹。为了解决这些挑战,在这封信中,提供了一个完整的自主空中系统,可以通过尺寸窄到0.6米的隧道平稳地飞行。该系统包含一个运动规划器,它沿着隧道中心线产生平滑的Mini-Jerk轨迹,该隧道中心线根据地图和欧几里德距离场(EDF)提取,并且通过计算流体动力学(CFD)和飞行获得其实际速度范围数据分析。在四窄隧道内部进行了大量飞行实验,以验证规划框架以及整个系统的鲁棒性。
translated by 谷歌翻译
Quasiparticle有效质量$ M ^ \ AST $互动电子是Fermi液体理论中的基本量。然而,在几十年后,均匀电子气体的有效质量仍然难以捉摸。新开发的神经规范变换方法Arxiv:2105.08644提供了通过直接计算低温热熵来提取电子气体的有效质量的原则方法。该方法使用两种生成神经网络模拟变分许多电子密度矩阵:用于电坐标的动量占用和标准化流动的自回归模型。我们的计算揭示了二维旋转偏振电子气中有效质量的抑制,其比在低密度强耦合区域中的先前报告更加明显。该预测要求在二维电子气体实验中验证。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
在图像美学质量评估的任务中,由于美学数据集的正常分布,难以达到高分区域和低得分面积。为了减少标签中的错误并解决正常数据分布的问题,我们提出了一个具有名为AMD-CR的分类和回归的新的美学混合数据集,我们培训了元重传网络以重新重量培训数据的损失不同。此外,我们还提供了一种基于二进制分类任务的伪标签的不同阶段的培训策略,然后我们将其用于审美培训,该课程涉及分类和回归任务的不同阶段。在网络结构的构造中,我们构建一种可以适应输入图像的任何大小的美学自适应块(AAB)结构。此外,我们还使用高效的通道注意力(ECA)来加强每个任务的特征提取能力。实验结果表明,与SROCC中的常规方法相比,我们的方法改善了0.1112。该方法还可以帮助找到无人驾驶飞行器(UAV)和车辆的最佳审美路径规划。
translated by 谷歌翻译
增强现实设备具有增强人类感知的潜力,并使复杂的会话环境中的其他辅助功能能够实现。有效地捕获理解这些社交交互所必需的视听上下文首先需要检测和定位设备佩戴者和周围人的语音活动。这些任务由于它们的高电平性质而挑战:佩戴者的头部运动可能导致运动模糊,周围的人可能出现在困难的观察中,并且可能有遮挡,视觉杂乱,音频噪声和畸形。在这些条件下,以前的最先进的主动扬声器检测方法不会给出令人满意的结果。相反,我们使用视频和多通道麦克风阵列音频从新设置中解决问题。我们提出了一种新的端到端深度学习方法,可以提供强大的语音活动检测和本地化结果。与以前的方法相比,我们的方法将主动扬声器从球体上的所有可能方向定位,即使在相机的视野之外,同时检测设备佩戴者自己的语音活动。我们的实验表明,该方法提供了卓越的结果,可以实时运行,并且对抗噪音和杂乱是强大的。
translated by 谷歌翻译
GPU广泛用于加速机器学习工作负载的培训。随着现代机器学习模型越来越大,他们需要更长的时间来训练,导致GPU能耗更高。本文介绍了GPOEO,一个用于机器学习培训工作负载的在线GPU能量优化框架。 GPOEO通过采用用于在线测量,多目标预测建模和搜索优化的新颖技术动态地确定最佳能量配置。为了表征目标工作量行为,GPOEO利用GPU性能计数器。为了减少性能计数器分析开销,它使用分析模型来检测训练迭代变化,并且仅在检测到迭代移位时收集性能计数器数据。 GPOEO基于梯度升压和本地搜索算法使用多目标模型,在执行时间和能量消耗之间找到权衡。通过将其应用于来自在NVIDIA RTX3080TI GPU上运行的两个AI基准套件,通过将其应用于71台机器学习工作负载来评估GPoeo。与NVIDIA默认调度策略相比,GPOEO提供16.2%的平均节能,平均执行时间增加5.1%。
translated by 谷歌翻译