现有检测方法通常使用参数化边界框(Bbox)进行建模和检测(水平)对象,并将其他旋转角参数用于旋转对象。我们认为,这种机制在建立有效的旋转检测回归损失方面具有根本的局限性,尤其是对于高精度检测而言,高精度检测(例如0.75)。取而代之的是,我们建议将旋转的对象建模为高斯分布。一个直接的优势是,我们关于两个高斯人之间距离的新回归损失,例如kullback-leibler Divergence(KLD)可以很好地对齐实际检测性能度量标准,这在现有方法中无法很好地解决。此外,两个瓶颈,即边界不连续性和正方形的问题也消失了。我们还提出了一种有效的基于高斯度量的标签分配策略,以进一步提高性能。有趣的是,通过在基于高斯的KLD损失下分析Bbox参数的梯度,我们表明这些参数通过可解释的物理意义进行了动态更新,这有助于解释我们方法的有效性,尤其是对于高精度检测。我们使用量身定制的算法设计将方法从2-D扩展到3-D,以处理标题估计,并在十二个公共数据集(2-D/3-D,空中/文本/脸部图像)上进行了各种基本检测器的实验结果。展示其优越性。
translated by 谷歌翻译
我们介绍了第一个基于学习的可重建性预测指标,以改善使用无人机的大规模3D城市场景获取的视图和路径计划。与以前的启发式方法相反,我们的方法学习了一个模型,该模型明确预测了从一组观点重建3D城市场景的能力。为了使这种模型可训练并同时适用于无人机路径计划,我们在培训期间模拟了基于代理的3D场景重建以设置预测。具体而言,我们设计的神经网络经过训练,可以预测场景的重构性,这是代理几何学的函数,一组观点,以及在飞行中获得的一系列场景图像。为了重建一个新的城市场景,我们首先构建了3D场景代理,然后依靠我们网络的预测重建质量和不确定性度量,基于代理几何形状,以指导无人机路径计划。我们证明,与先前的启发式措施相比,我们的数据驱动的可重建性预测与真实的重建质量更加紧密相关。此外,我们学到的预测变量可以轻松地集成到现有的路径计划中,以产生改进。最后,我们根据学习的可重建性设计了一个新的迭代视图计划框架,并在重建合成场景和真实场景时展示新计划者的卓越性能。
translated by 谷歌翻译
预训练的语言模型在对话任务上取得了长足的进步。但是,这些模型通常在表面对话文本上进行训练,因此被证明在理解对话环境的主要语义含义方面是薄弱的。我们研究抽象含义表示(AMR)作为预训练模型的明确语义知识,以捕获预训练期间对话中的核心语义信息。特别是,我们提出了一个基于语义的前训练框架,该框架通过三个任务来扩展标准的预训练框架(Devlin等,2019)。根据AMR图表示。关于聊天聊天和面向任务的对话的理解的实验表明了我们的模型的优势。据我们所知,我们是第一个利用深层语义表示进行对话预训练的人。
translated by 谷歌翻译
在多机构系统(例如多机构无人驾驶汽车和多机构自动驾驶水下车辆)中,羊群控制是一个重大问题,可增强代理的合作和安全性。与传统方法相反,多机构增强学习(MARL)更灵活地解决了羊群控制的问题。但是,基于MARL的方法遭受了样本效率低下的影响,因为它们需要从代理与环境之间的相互作用中收集大量的经验。我们提出了一种新颖的方法,该方法对MARL(PWD-MARL)的示范进行了预处理,该方法可以利用以传统方法预处理剂来利用非专家示范。在预审进过程中,代理人同时通过MARL和行为克隆从示范中学习政策,并阻止过度拟合示范。通过对非专家示范进行预处理,PWD-MARL在温暖的开始中提高了在线MAL的样品效率。实验表明,即使发生不良或很少的示威,PWD-MARL在羊群控制问题中提高了样本效率和政策性能。
translated by 谷歌翻译
羊群控制是一个具有挑战性的问题,在维持羊群的同时,需要达到目标位置,并避免了环境中特工之间的障碍和碰撞碰撞。多代理增强学习在羊群控制中取得了有希望的表现。但是,基于传统强化学习的方法需要代理与环境之间的相互作用。本文提出了一项次优政策帮助多代理增强学习算法(SPA-MARL),以提高样本效率。 Spa-Marl直接利用可以通过非学习方法手动设计或解决的先前政策来帮助代理人学习,在这种情况下,该策略的表现可以是最佳的。 SPA-MARL认识到次优政策与本身之间的性能差异,然后模仿次优政策,如果次优政策更好。我们利用Spa-Marl解决羊群控制问题。基于人造潜在领域的传统控制方法用于生成次优政策。实验表明,水疗中心可以加快训练过程,并优于MARL基线和所使用的次优政策。
translated by 谷歌翻译
常规作品通常采用两阶段模型,其中生成器选择最重要的部分,然后是根据所选零件进行预测的预测因子。但是,这样的两相模型可能会引起变性问题,其中预测变量过度适合尚未训练的发电机生成的噪声,然后导致发电机收敛到倾向于选择无意义的碎片的亚最佳模型。为了应对这一挑战,我们提出了折叠的合理化(FR),将理由模型的两个阶段折叠成一个文本语义提取的角度。FR的关键思想是在发电机和预测器之间采用统一的编码器,基于FR可以通过访问传统两相模型中发电机阻止的有价值的信息来促进更好的预测指标,从而带来更好的生成器。从经验上讲,我们表明,与最先进的方法相比,FR将F1得分提高了10.3%。
translated by 谷歌翻译
我们提出了Patron,这是一种新方法,它使用基于及时的不确定性估计,用于在冷启动场景下进行预训练的语言模型进行微调的数据选择,即,没有初始标记的数据可用。在顾客中,我们设计(1)一种基于迅速的不确定性传播方法来估计数据点的重要性和(2)分区 - 然后 - 剥离(PTR)策略,以促进对注释的样品多样性。六个文本分类数据集的实验表明,赞助人的表现优于最强的冷启动数据选择基准,高达6.9%。此外,仅具有128个标签,顾客分别基于香草微调和及时的学习,获得了91.0%和92.1%的全面监督性能。我们的赞助人实施可在\ url {https://github.com/yueyu1030/patron}上获得。
translated by 谷歌翻译
这项研究提出了一种基于深度学习的超声(US)图像引导放射疗法的跟踪方法。拟议的级联深度学习模型由注意力网络,基于掩模区域的卷积神经网络(Mask R-CNN)和长期短期记忆(LSTM)网络组成。注意网络从美国图像到可疑的具有里程碑意义的运动区域,以减少搜索区域。然后,面膜R-CNN在减少区域中产生多个利益区域(ROI)建议,并通过三个网络头确定拟议的地标:边界框回归,提案分类和地标分段。 LSTM网络对连续的图像框架之间的时间关系建模,以进行边界框回归和建议分类。为了合并最终建议,根据顺序框架之间的相似性设计选择方法。该方法在肝脏美国跟踪数据集中测试了医疗图像计算和计算机辅助干预措施(MICCAI)2015年的挑战,其中有三位经验丰富的观察者注释了地标,以获得其平均位置。在24个鉴于我们具有地面真相的序列的24个序列上,所有地标的平均跟踪误差为0.65 +/- 0.56毫米,所有地标的误差均在2 mm之内。我们进一步测试了从测试数据集中的69个地标上提出的模型,该模型具有与训练模式相似的图像模式,从而导致平均跟踪误差为0.94 +/- 0.83 mm。我们的实验结果表明,我们提出的方法使用US图像跟踪肝解剖学地标的可行性和准确性,为放射治疗期间的主动运动管理提供了潜在的解决方案。
translated by 谷歌翻译
近年来,商业上可用和负担得起的四足动物机器人激增,其中许多平台在研究和行业中都被积极使用。随着腿部机器人的可用性的增长,对这些机器人能够执行有用技能的控制器的需求也是如此。但是,大多数用于控制器开发的基于学习的框架都集中在培训机器人特定的控制器上,该过程需要为每个新机器人重复。在这项工作中,我们引入了一个用于训练四足机器人的广义运动(Genloco)控制器的框架。我们的框架合成了可以部署在具有相似形态的各种四足动物的机器人上的通用运动控制器。我们提出了一种简单但有效的形态随机化方法,该方法在程序上生成了一组训练的模拟机器人。我们表明,通过对这套模拟机器人进行训练,我们的模型获得了更多的通用控制策略,这些策略可以直接转移到具有多种形态的新型模拟和真实世界机器人中,在训练过程中未观察到。
translated by 谷歌翻译
近年来,基于变压器的预训练模型已获得了很大的进步,成为自然语言处理中最重要的骨干之一。最近的工作表明,变压器内部的注意力机制可能不需要,卷积神经网络和基于多层感知器的模型也已被研究为变压器替代方案。在本文中,我们考虑了一个用于语言模型预训练的图形循环网络,该网络通过本地令牌级通信为每个序列构建一个图形结构,以及与其他代币解耦的句子级表示。原始模型在受监督培训下的特定领域特定文本分类中表现良好,但是,其通过自我监督的方式学习转移知识的潜力尚未得到充分利用。我们通过优化体系结构并验证其在更通用的语言理解任务(英语和中文)中的有效性来填补这一空白。至于模型效率,我们的模型在基于变压器的模型中而不是二次复杂性,而是具有线性复杂性,并且在推断过程中的性能更有效。此外,我们发现与现有基于注意力的模型相比,我们的模型可以生成更多样化的输出,而背景化的功能冗余性较小。
translated by 谷歌翻译