Uniapaired 3D对象完成旨在从不完整的输入预测完整的3D形状,而不知道训练期间完整和不完整的形状之间的对应关系。为了构建两个数据模式之间的对应关系,之前的方法通常会应用逆势训练以匹配编码器提取的全局形状特征。然而,这忽略了解码器的金字塔层次结构中嵌入的多级几何信息之间的对应关系,这使得先前的方法难以产生高质量的完整形状。为了解决这个问题,我们提出了一种新颖的未配对形状完成网络,命名为MFM-Net,使用多级特征匹配,将几何对应的学习分解成在点云解码器中的分层生成过程中的多级。具体地,MFM-Net采用双路径架构,以在解码器的不同层中建立多个特征匹配信道,然后与对手学习组合以合并来自完整和不完整的模式的特征的分布。此外,还应用了一种改进来增强细节。结果,MFM-Net利用更全面的理解来在本地到全局角度下建立完整和不完整的形状之间的几何对应,这使得能够更详细的几何推断来产生高质量的完整形状。我们对多个数据集进行全面实验,结果表明,我们的方法优于以前的未配对点云完成方法,具有大的余量。
translated by 谷歌翻译
最近,刘和张研究了从压缩传感的角度研究了时间序列预测的相当具有挑战性的问题。他们提出了一个没有学习的方法,名为卷积核规范最小化(CNNM),并证明了CNNM可以完全从其观察到的部分恢复一系列系列的部分,只要该系列是卷积的低级。虽然令人印象深刻,但是每当系列远离季节性时可能不满足卷积的低秩条件,并且实际上是脆弱的趋势和动态的存在。本文试图通过将学习,正常的转换集成到CNNM中,以便将一系列渐开线结构转换为卷积低等级的常规信号的目的。我们证明,由于系列的变换是卷积低级的转换,所以,所产生的模型是基于学习的基于学习的CNNM(LBCNM),严格成功地识别了一个系列的未来部分。为了学习可能符合所需成功条件的适当转换,我们设计了一种基于主成分追求(PCP)的可解释方法。配备了这种学习方法和一些精心设计的数据论证技巧,LBCNM不仅可以处理时间序列的主要组成部分(包括趋势,季节性和动态),还可以利用其他一些预测方法提供的预测;这意味着LBCNNM可以用作模型组合的一般工具。从时间序列数据库(TSDL)和M4竞争(M4)的100,452个现实世界时间序列的大量实验证明了LBCNNM的卓越性能。
translated by 谷歌翻译
社交媒体帖子包含有关医疗条件和与健康相关行为的潜在有价值的信息。生物重建VII任务3专注于通过识别推文中的药物和膳食补充剂的提及来挖掘这些信息。我们通过精细调整多个BERT样式语言模型来执行此任务以执行令牌级分类,并将它们组合成集合以生成最终预测。我们最好的系统由五个Megatron-Bert-345M型号组成,在看不见的测试数据上实现了0.764的严格F1得分。
translated by 谷歌翻译
生物重建VII Track-2挑战包括命名实体识别,实体链接(或实体 - 归一化),主题索引任务 - 与实体和主题限制为这项挑战的化学品。命名实体识别是一个完善的问题,我们通过基于Bert的生物群体模型实现了我们的最佳性能。我们将基于BERT的方法扩展到实体链接任务。在预先预订Biobert的第二阶段,通过称为自对准预先训练(SAP)的度量学习损失策略,我们将基于其SAP-Biobert Word Embeddings之间的余弦相似性链接实体。尽管我们的命名实体识别实验取得了成功,但我们发现化学指数任务一般更具挑战性。除了传统的NER方法之外,我们还尝试使用基于新颖的文本或“提示”方法的命名实体识别和实体链接,该方法使用生成语言模型,例如T5和GPT。我们通过这种新方法实现了令人鼓舞的结果。
translated by 谷歌翻译
在Bircocrive VII的Track-1中,要求参与者识别药物/化学品和蛋白质之间的相互作用。提供每个药物/化学和蛋白质的内部名称实体注释,必须自动预测14个不同的相互作用中的一种。对于此关系提取任务,我们尝试两种基于BERT的句子分类方法,以及使用T5模型的更新文本到文本方法。我们发现基于BERT的模型一般表现更好,我们的生物综太基模型实现了所有指标的最高分,实现了0.74 F1得分。虽然我们的小说T5文本到文本方法没有表现出基于BERT的大多数模型,但它表现出在类似数据上培训的那些,呈现出有希望的结果,实现0.65 F1得分。我们认为,与关系提取的文本文本方法有一些竞争优势,并且有很多研究进步的空间。
translated by 谷歌翻译
由于稀疏和嘈杂的测量,不完整的观察和大转化,3D对象的点云注册是非常具有挑战性的。在这项工作中,我们提出了匹配共识网络(GMCNet)的图表匹配,该网络估计了ultrange 1偏向部分点云注册(PPR)的姿势不变的对应关系。为了编码强大的点描述符,1)我们首先全面调查各种几何特征的变换 - 鲁棒性和远征性。 2)然后,我们采用新颖的转换 - 强大的点变换器(TPT)模块,以自适应地聚合有关结构关系的本地特征,其利用手工旋转 - 不变($ RI $)功能和噪声弹性空间坐标。 3)基于分层图网络网络和图形建模的协同作用,我们提出了编码由I)从$ RI $特征中汲取的一项机会学习的强大描述符的分层图形建模(HGM)架构;并且ii)通过我们的TPT模块以不同尺度的相邻点关系编码的多个平滑术语。此外,我们用虚拟扫描构建一个具有挑战性的PPR数据集(MVP-RG)。广泛的实验表明,GMCNet优于PPR以前的最先进方法。值得注意的是,GMCNET编码每个点云的点描述符,而不使用CrossContexual信息,或接地真理对应进行培训。我们的代码和数据集将在https://github.com/paul007pl/gmcnet上获得。
translated by 谷歌翻译
神经辐射场(NERF)在代表3D场景和合成新颖视图中示出了很大的潜力,但是在推理阶段的NERF的计算开销仍然很重。为了减轻负担,我们进入了NERF的粗细分,分层采样过程,并指出粗阶段可以被我们命名神经样本场的轻量级模块代替。所提出的示例场地图光线进入样本分布,可以将其转换为点坐标并进料到radiance字段以进行体积渲染。整体框架被命名为Neusample。我们在现实合成360 $ ^ {\ circ} $和真正的前瞻性,两个流行的3D场景集上进行实验,并表明Neusample在享受更快推理速度时比NERF实现更好的渲染质量。Neusample进一步压缩,以提出的样品场提取方法朝向质量和速度之间的更好的权衡。
translated by 谷歌翻译
以前的纵向图像生成方法大致分为两类:2D GAN和3D感知的GAN。 2D GAN可以产生高保真肖像,但具有低视图一致性。 3D感知GaN方法可以维护查看一致性,但它们所生成的图像不是本地可编辑的。为了克服这些限制,我们提出了FENERF,一个可以生成查看一致和本地可编辑的纵向图像的3D感知生成器。我们的方法使用两个解耦潜码,以在具有共享几何体的空间对齐的3D卷中生成相应的面部语义和纹理。从这种底层3D表示中受益,FENERF可以联合渲染边界对齐的图像和语义掩码,并使用语义掩模通过GaN反转编辑3D音量。我们进一步示出了可以从广泛可用的单手套图像和语义面膜对中学习这种3D表示。此外,我们揭示了联合学习语义和纹理有助于产生更精细的几何形状。我们的实验表明FENERF在各种面部编辑任务中优于最先进的方法。
translated by 谷歌翻译
混合是深度神经网络的流行数据依赖性增强技术,其包含两个子任务,混合生成和分类。社区通常将混合限制在监督学习(SL)中,并且生成子任务的目的是固定到采样的对,而不是考虑整个数据歧管。为了克服这些限制,我们系统地研究了两个子任务的目标,并为SL和自我监督的学习(SSL)方案,命名为Samix的两个子任务和提出情景 - 激动化混合。具体而言,我们假设并验证混合生成的核心目标,因为优化来自其他类别的全球歧视的两个类之间的局部平滑度。基于这一发现,提出了$ \ eta $ -Balanced混合丢失,以进行两个子任务的互补培训。同时,生成子任务被参数化为可优化的模块,混音器,其利用注意机制来生成混合样本而无需标记依赖性。对SL和SSL任务的广泛实验表明SAMIX始终如一地优于大边距。
translated by 谷歌翻译
尽管深神经网络的占优势性能,但最近的作品表明它们校准不佳,导致过度自信的预测。由于培训期间的跨熵最小化,因此可以通过过度化来加剧错误烫伤,因为它促进了预测的Softmax概率来匹配单热标签分配。这产生了正确的类别的Pre-SoftMax激活,该类别明显大于剩余的激活。来自文献的最近证据表明,损失函数嵌入隐含或明确最大化的预测熵会产生最先进的校准性能。我们提供了当前最先进的校准损耗的统一约束优化视角。具体地,这些损失可以被视为在Logit距离上施加平等约束的线性惩罚(或拉格朗日)的近似值。这指出了这种潜在的平等约束的一个重要限制,其随后的梯度不断推动非信息解决方案,这可能会阻止在基于梯度的优化期间模型的辨别性能和校准之间的最佳妥协。在我们的观察之后,我们提出了一种基于不平等约束的简单灵活的泛化,这在Logit距离上强加了可控裕度。关于各种图像分类,语义分割和NLP基准的综合实验表明,我们的方法在网络校准方面对这些任务设置了新的最先进的结果,而不会影响辨别性能。代码可在https://github.com/by-liu/mbls上获得。
translated by 谷歌翻译